首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Excessive accumulation of nickel (Ni) can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe)-regulated transporter1 (IRT1), mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn) deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i) Zn deficiency induces short-term Ni2+ absorption and (ii) Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3)-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency.  相似文献   

6.
7.
Copper (Cu)-toxic effects on Citrus grandis growth and Cu uptake, as well as gene expression and physiological parameters in leaves were investigated. Using RNA-Seq, 715 upregulated and 573 downregulated genes were identified in leaves of C. grandis seedlings exposed to Cu-toxicity (LCGSEC). Cu-toxicity altered the expression of 52 genes related to cell wall metabolism, thus impairing cell wall metabolism and lowering leaf growth. Cu-toxicity downregulated the expression of photosynthetic electron transport-related genes, thus reducing CO2 assimilation. Some genes involved in thermal energy dissipation, photorespiration, reactive oxygen species scavenging and cell redox homeostasis and some antioxidants (reduced glutathione, phytochelatins, metallothioneins, l-tryptophan and total phenolics) were upregulated in LCGSEC, but they could not protect LCGSEC from oxidative damage. Several adaptive responses might occur in LCGSEC. LCGSEC displayed both enhanced capacities to maintain homeostasis of Cu via reducing Cu uptake by leaves and preventing release of vacuolar Cu into the cytoplasm, and to improve internal detoxification of Cu by accumulating Cu chelators (lignin, reduced glutathione, phytochelatins, metallothioneins, l-tryptophan and total phenolics). The capacities to maintain both energy homeostasis and Ca homeostasis might be upregulated in LCGSEC. Cu-toxicity increased abscisates (auxins) level, thus stimulating stomatal closure and lowering water loss (enhancing water use efficiency and photosynthesis).  相似文献   

8.
Zinc deficiency may enhance B absorption and transport to such an extent that B may possibly accumulate to toxic levels in plant tops. Therefore, a screen house experiment was conducted to investigate the effect of B levels (0, 2.5, 5.0, 7.5 and 10 mg B kg–1 soil) as influenced by Zn levels (0, 10 and 20 mg Zn kg–1 soil) on DM yield of wheat tops and tissue concentration and uptake of B, Zn, Cu, Mn, Fe, Ca, Mg, K and P. Application of B decreased the dry matter yield of wheat significantly at all levels of Zn. Conversely, increasing levels of Zn increased the wheat yield significantly. The application of B increased the tissue concentration and uptake of B by wheat plants more in the absence than in the presence of Zn application. Consequently, concentration of B in wheat plants decreased with increasing levels of Zn application to the soil. This decrease in tissue B concentration was not only due to increased growth of wheat plants. Zinc application appears to have created a protective mechanism in the root cell environment against excessive uptake of B, as evidenced by the reduction of B uptake in Zn treated plants. The uptake of Mn, Mg and P decreased while the uptake of Cu, Fe, and K by wheat plants increased with Zn application. Whereas, the uptake of all nutrients (Cu, Fe, Mn, Ca, Mg, K and P) decreased significantly with the application of B. However, this depressive effect of B on nutrient uptake was less marked in the presence of applied Zn.  相似文献   

9.
10.
11.
Micronutrient metals, such as Mn, Cu, Fe, and Zn, are essential heavy metals for plant growth and development, while Cd is a nonessential heavy metal that is highly toxic to both plants and humans. Our understanding of the molecular mechanisms underlying Cd and micronutrient metal accumulation in plants remains incomplete. Here, we show that OsFWL7, an FW2.2-like (FWL) family gene in Oryza sativa, is preferentially expressed in the root and encodes a protein localized to the cell membrane. The osfwl7 mutation reduces both the uptake and the root-to-shoot translocation of Cd in rice plants. Additionally, the accumulation of micronutrient metals, including Mn, Cu, and Fe, was lower in osfwl7 mutants than in the wildtype plants under normal growth conditions. Moreover, the osfwl7 mutation affects the expression of several heavy metal transporter genes. Protein interaction analyses reveal that rice FWL proteins interact with themselves and one another, and with several membrane microdomain marker proteins. Our results suggest that OsFWL7 is involved in Cd and micronutrient metal accumulation in rice. Additionally, rice FWL proteins may form oligomers and some of them may be located in membrane microdomains.  相似文献   

12.
Coumarins belong to a group of secondary metabolites well known for their high biological activities including antibacterial and antifungal properties. Recently, an important role of coumarins in plant resistance to pathogens and their release into the rhizosphere upon pathogen infection was discovered. It is also well documented that coumarins play a crucial role in the Arabidopsis thaliana growth under Fe-limited conditions. However, the mechanisms underlying interplay between plant resistance, accumulation of coumarins and Fe status, remain largely unknown. In this work, we investigated the effect of both mentioned factors on the disease severity using the model system of Arabidopsis/Dickeya spp. molecular interactions. We evaluated the disease symptoms in Arabidopsis plants, wild-type Col-0 and its mutants defective in coumarin accumulation, grown in hydroponic cultures with contrasting Fe regimes and in soil mixes. Under all tested conditions, Arabidopsis plants inoculated with Dickeya solani IFB0099 strain developed more severe disease symptoms compared to lines inoculated with Dickeya dadantii 3937. We also showed that the expression of genes encoding plant stress markers were strongly affected by D. solani IFB0099 infection. Interestingly, the response of plants to D. dadantii 3937 infection was genotype-dependent in Fe-deficient hydroponic solution.  相似文献   

13.
Auxins play an essential role in regulating plant growth and adaptation to abiotic stresses, such as nutrient stress. Our current understanding of auxins is based almost entirely on the results of research on the eudicot Arabidopsis thaliana, however, the role of the rice PIN-FORMED (PIN) auxin efflux carriers in the regulation of the ammonium-dependent response remains elusive. Here, we analyzed the expression patterns in various organs/tissues and the ammonium-dependent response of rice PIN-family genes (OsPIN genes) via qRT–PCR, and attempted to elucidate the relationship between nitrogen (N) utilization and auxin transporters. To investigate auxin distribution under ammonium-dependent response after N deficiency in rice roots, we used DR5::VENUS reporter lines that retained a highly active synthetic auxin response. Subsequently, we confirmed that ammonium supplementation reduced the DR5::VENUS signal compared with that observed in the N-deficient condition. These results are consistent with the decreased expression patterns of almost all OsPIN genes in the presence of the ammonium-dependent response to N deficiency. Furthermore, the ospin1b mutant showed an insensitive phenotype in the ammonium-dependent response to N deficiency and disturbances in the regulation of several N-assimilation genes. These molecular and physiological findings suggest that auxin is involved in the ammonium assimilation process of rice, which is a model crop plant.  相似文献   

14.
Nicotinamide adenine dinucleotide (NAD) is a pivotal coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living cells. The homeostasis of NAD is required for plant growth, development, and adaption to environmental stresses. Quinolinate phosphoribosyltransferase (QPRT) is a key enzyme in NAD de novo synthesis pathway. T-DNA-based disruption of QPRT gene is embryo lethal in Arabidopsis thaliana. Therefore, to investigate the function of QPRT in Arabidopsis, we generated transgenic plants with decreased QPRT using the RNA interference approach. While interference of QPRT gene led to an impairment of NAD biosynthesis, the QPRT RNAi plants did not display distinguishable phenotypes under the optimal condition in comparison with wild-type plants. Intriguingly, they exhibited enhanced sensitivity to an avirulent strain of Pseudomonas syringae pv. tomato (Pst-avrRpt2), which was accompanied by a reduction in salicylic acid (SA) accumulation and down-regulation of pathogenesis-related genes expression as compared with the wild type. Moreover, oxidative stress marker genes including GSTU24, OXI1, AOX1 and FER1 were markedly repressed in the QPRT RNAi plants. Taken together, these data emphasized the importance of QPRT in NAD biosynthesis and immunity defense, suggesting that decreased antibacterial immunity through the alteration of NAD status could be attributed to SA- and reactive oxygen species-dependent pathways.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号