首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical CO2 reduction reaction (CO2RR) to value-added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2RR at near-zero potentials. To reduce cost and improve activity, the high-dispersive Pd nanoparticles on hierarchical N-doped carbon nanocages (Pd/hNCNCs) are constructed by regulating pH in microwave-assisted ethylene glycol reduction. The optimal catalyst exhibits high formate Faradaic efficiency of >95% within −0.05–0.30 V and delivers an ultrahigh formate partial current density of 10.3 mA cm−2 at the low potential of −0.25 V. The high performance of Pd/hNCNCs is attributed to the small size of uniform Pd nanoparticles, the optimized intermediates adsorption/desorption on modified Pd by N-doped support, and the promoted mass/charge transfer kinetics arising from the hierarchical structure of hNCNCs. This study sheds light on the rational design of high-efficient electrocatalysts for advanced energy conversion.  相似文献   

2.
Proton exchange membrane water electrolyzer (PEMWE) is a green hydrogen production technology that can be coupled with intermittent power sources such as wind and photoelectric power. To achieve cost-effective operations, low noble metal loading on the anode catalyst layer is desired. In this study, a catalyst with RuO2 nanorods coated outside SnO2 nanocubes is designed, which forms continuous networks and provides high conductivity. This allows for the reduction of Ru contents in catalysts. Furthermore, the structure evolutions on the RuO2 surface are carefully investigated. The etched RuO2 surfaces are seen as the consequence of Co leaching, and theoretical calculations demonstrate that it is more effective in driving oxygen evolution. For electrochemical tests, the catalysts with 23 wt% Ru exhibit an overpotential of 178 mV at 10 mA cm−2, which is much higher than most state-of-art oxygen evolution catalysts. In a practical PEMWE, the noble metal Ru loading on the anode side is only 0.3 mg cm−2. The cell achieves 1.61 V at 1 A cm−2 and proper stability at 500 mA cm−2, demonstrating the effectiveness of the designed catalyst.  相似文献   

3.
Noble metal powders (Au, Ag, Pt, Pd and Ru) have been synthesized by the polyol process in both the nanometer and submicron scales (sans Pd, Pt and Ru). They have been characterized by both microscopic (TEM and SEM) as well as spectroscopic techniques (FT-IR and XPS). Infrared spectroscopy was employed to study the colloid particles in the presence of ethylene glycol and PVP and the results show that the interaction between the organic phase and the metal particles vary according to the particle size. The role of the solvent, ethylene glycol, during the reduction process was also investigated and we observe formation of >C=O vibration band after the reduction process implying that the solvent reduces the metal ions thereby getting oxidized. XPS measurements carried out on the colloidal sols have shown the presence of the organic phase adsorbed onto the metal particles.  相似文献   

4.
To meet the practical demand of overall water splitting and regenerative metal–air batteries, highly efficient, low-cost, and durable electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are required to displace noble metal catalysts. In this work, a facile solid-state synthesis strategy is developed to construct the interfacial engineering of W2N/WC heterostructures, in which abundant interfaces are formed. Under high temperature (800 °C), volatile CNx species from dicyanodiamide are trapped by WO3 nanorods, followed by simultaneous nitridation and carbonization, to form W2N/WC heterostructure catalysts. The resultant W2N/WC heterostructure catalysts exhibit an efficient and stable electrocatalytic performance toward the ORR, OER, and HER, including a half-wave potential of 0.81 V (ORR) and a low overpotential at 10 mA cm−2 for the OER (320 mV) and HER (148.5 mV). Furthermore, a W2N/WC-based Zn–air battery shows outstanding high power density (172 mW cm−2). Density functional theory and X-ray absorption fine structure analysis computations reveal that W2N/WC interfaces synergistically facilitate transport and separation of charge, thus accelerating the electrochemical ORR, OER, and HER. This work paves a novel avenue for constructing efficient and low-cost electrocatalysts for electrochemical energy devices.  相似文献   

5.
Skrabalak SE  Wiley BJ  Kim M  Formo EV  Xia Y 《Nano letters》2008,8(7):2077-2081
The polyol synthesis is a popular method of preparing metal nanostructures, yet the mechanism by which metal ions are reduced is poorly understood. Using a spectrophotometric method, we show, for the first time, that heating ethylene glycol (EG) in air results in its oxidation to glycolaldehyde (GA), a reductant capable of reducing most noble metal ions. The dependence of reducing power on temperature for EG can be explained by this temperature-dependent oxidation, and the factors influencing GA production can have a profound impact on the nucleation and growth kinetics. These new findings provide critical insight into how the polyol synthesis can be used to generate metal nanostructures with well-controlled shapes. For example, with the primary reductant identified, it becomes possible to evaluate and understand its explicit role in generating nanostructures of a specific shape to the exclusion of others.  相似文献   

6.
Non‐noble metal catalysts for high‐active electrocatalytic oxygen evolution reaction (OER) are essential in large‐scale application for water splitting. Herein, tricomponent metal phosphides with hollow structures are synthesized from cobalt‐contained metal organic frameworks (MOFs), i.e., ZIF‐67, by tailoring the feeding ratios of Ni and Fe, followed by a high‐temperature reduction and a subsequent phosphidation process. Excellent OER activity and long‐time stability are achieved in 1 m NaOH aqueous solution, with an overpotential of 329 mV at 10 mA cm?2 and Tafel slope of 48.2 mV dec?1, even superior to the noble metal‐based catalyst. It is evidenced that the formed (oxyhydr)oxide/phosphate species by in situ electrochemical surface oxidation are responsible for active OER. Accordingly, the simultaneous introduction of external Ni and Fe elements significantly influences the electronic structures of the parent metal phosphides, leading to the in situ electrochemical formation of surface active layer with decreased OER activation energy for greatly improved water oxidation performance. This electronic structure tuning strategy by introducing multicomponent metals demonstrates a versatile method to use MOFs as precursors for synthesizing high‐efficient water splitting electrocatalysts.  相似文献   

7.
Polyol synthesis route, which is a popular and effective way of synthesizing noble metal nanocrystals, has been employed for the fabrication of Cu2O nanospheres. With this method, the particle size of the product can be readily tailored by tuning the concentration of Cu(NO3)2 and/or poly(vinyl pyrrolidone). It has been demonstrated that the main driving force of this reaction is the difference in redox potentials between ethylene glycol (EG) and NO3, and not that between those of EG and Cu2+. The resulting Cu2O nanospheres were used as a solid precursor for generating hollow nanospheres of copper sulfide with different sulfiding degrees, as well as CuO, via suitable chemical conversions. The Kirkendall effect determined the final hollow structure. The results in this paper provide a good example of the broadening of the scope of application of polyol synthesis route and may supply a thinking clue for the synthesis of other oxide materials.   相似文献   

8.
We have successfully fabricated barium titanate (BaTiO3) films on Si (100) and Pt(111)/Ti/SiO2/Si substrates using the polyol thermal decomposition (PTD) process by spin-coating technique. In PTD process, we confirmed that the crystalline oxycarbonate Ba2Ti2O5CO3 films were directly formed as a consequence of evaporation of polyol precursor solution prepared simply by mixing metal chlorides and ethylene glycol, and then converting them into crystalline BaTiO3 films through thermal decomposition at >500 °C. This feature makes it possible to grow densely packed and crack-free BaTiO3 films as thin as 70 ? per cycle. Although PTD is described here for a complex metal-oxide film of BaTiO3, other simple and complex metal-oxide thin films with high-dielectric constant materials are also likely to be suitable for deposition with accurate control of film thickness and composition using the polyol precursor solutions.  相似文献   

9.
Herein, a surfactant‐ and additive‐free strategy is developed for morphology‐controllable synthesis of cobalt pyrophosphate (CoPPi) nanostructures by tuning the concentration and ratio of the precursor solutions of Na4P2O7 and Co(CH3COO)2. A series of CoPPi nanostructures including nanowires, nanobelts, nanoleaves, and nanorhombuses are prepared and exhibit very promising electrocatalytic properties toward the oxygen evolution reaction (OER). Acting as both reactant and pseudo‐surfactant, the existence of excess Na4P2O7 is essential to synthesize CoPPi nanostructures for unique morphologies. Among all CoPPi nanostructures, the CoPPi nanowires catalyst renders the best catalytic performance for OER in alkaline media, achieving a low Tafel slope of 54.1 mV dec−1, a small overpotential of 359 mV at 10 mA cm−2, and superior stability. The electrocatalytic activities of CoPPi nanowires outperform the most reported non‐noble metal based catalysts, even better than the benchmark Ir/C (20%) catalyst. The reported synthesis of CoPPi gives guidance for morphology control of transition metal pyrophosphate based nanostructures for a high‐performance inexpensive material to replace the noble metal‐based OER catalysts.  相似文献   

10.
In this work we prepared icosahedral gold particles and gold nanoplates using potassium tetrachloroaurate as precursor and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers as both reductant and capping agent under microwave irradiation. The products were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The size and shape of the resultant nanoparticles could be tuned by changing the chloride ion dosage and reaction temperature. With lower dosage of chloride ion, a lower proportion of irregular shaped nanoparticles and smaller gold decahedra and icosahedra were observed. Increasing the molecular ratio of [AuCl4]/[Cl] and reaction temperature could increase the proportion of gold nanoplates in the final product. Typically when the reaction proceeded at 120 °C with [AuCl4]/[Cl] = 10, > 90% of the product was nanoplatelets.  相似文献   

11.
Lithium-metal batteries (LMBs) with high energy densities are highly desirable for energy storage, but generally suffer from dendrite growth and side reactions in liquid electrolytes; thus the need for solid electrolytes with high mechanical strength, ionic conductivity, and compatible interface arises. Herein, a thiol-branched solid polymer electrolyte (SPE) is introduced featuring high Li+ conductivity (2.26 × 10−4 S cm−1 at room temperature) and good mechanical strength (9.4 MPa)/toughness (≈500%), thus unblocking the tradeoff between ionic conductivity and mechanical robustness in polymer electrolytes. The SPE (denoted as M-S-PEGDA) is fabricated by covalently cross-linking metal–organic frameworks (MOFs), tetrakis (3-mercaptopropionic acid) pentaerythritol (PETMP), and poly(ethylene glycol) diacrylate (PEGDA) via multiple C S C bonds. The SPE also exhibits a high electrochemical window (>5.4 V), low interfacial impedance (<550 Ω), and impressive Li+ transference number (tLi+ = 0.44). As a result, Li||Li symmetrical cells with the thiol-branched SPE displayed a high stability in a >1300 h cycling test. Moreover, a Li|M-S-PEGDA|LiFePO4 full cell demonstrates discharge capacity of 143.7 mAh g−1 and maintains 85.6% after 500 cycles at 0.5 C, displaying one of the most outstanding performances for SPEs to date.  相似文献   

12.
A modified polyol process was proposed to prepare Ag nanowires in this study. The typical reductant, ethylene glycol, was replaced with 2-ethoxy ethanol in the presence of polyvinylpyrrolidone (PVP) to grow Ag nanowires and nanoplates. The growth of Ag nanowires was monitored by the UV–Visible spectrum, which depends on the geometry-dependent surface plasmon resonances of the Ag nanowires. The crystal phase of the Ag nanostructures was identified by X-ray diffraction. Transmission electron microscopy showed that the average dimensions of the Ag nanowires were lengths of approximately 2–10 μm and diameter of 80 nm. The PVP molecules played a key role in directing the growth of the Ag nanostructures along the (111) crystal plane, and the reduction rate of Ag+ at 25 °C when 2-ethoxy ethanol was used was faster than when ethylene glycol was used, which improved the growth of the Ag nanowires. When the AgNO3-to-PVP ratio was adjusted to 2, multiple twinned particles could be observed at an initial stage of the reaction, and a higher yield of the Ag nanowires was synthesized. When the PVP drop rate was slowed, more Ag nanowires were grown. Interestingly, when the AgNO3 and PVP molecules were initially premixed, Ag nanoplates were generated, rather than nanowires, at a higher temperature in this reduction system.  相似文献   

13.
Single-atom FeN4 sites at the edges of carbon substrates are considered more active for oxygen electrocatalysis than those in plane; however, the conventional high-temperature pyrolysis process does not allow for precisely engineering the location of the active site down to atomic level. Enlightened by theoretical prediction, herein, a self-sacrificed templating approach is developed to obtain edge-enriched FeN4 sites integrated in the highly graphitic nanosheet architecture. The in situ formed Fe clusters are intentionally introduced to catalyze the growth of graphitic carbon, induce porous structure formation, and most importantly, facilitate the preferential anchoring of FeN4 to its close approximation. Due to these attributes, the as-resulted catalyst (denoted as Fe/N-G-SAC) demonstrates unprecedented catalytic activity and stability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) by showing an impressive half-wave potential of 0.89 V for the ORR and a small overpotential of 370 mV at 10 mA cm−2 for the OER. Moreover, the Fe/N-G-SAC cathode displays encouraging performance in a rechargeable Zn–air battery prototype with a low charge–discharge voltage gap of 0.78 V and long-term cyclability for over 240 cycles, outperforming the noble metal benchmarks.  相似文献   

14.
Lithium metal batteries (LMBs) are promising for next-generation high-energy-density batteries owing to the highest specific capacity and the lowest potential of Li metal anode. However, the LMBs are normally confronted with drastic capacity fading under extremely cold conditions mainly due to the freezing issue and sluggish Li+ desolvation process in commercial ethylene carbonate (EC)-based electrolyte at ultra-low temperature (e.g., below −30 °C). To overcome the above challenges, an anti-freezing carboxylic ester of methyl propionate (MP)-based electrolyte with weak Li+ coordination and low-freezing temperature (below −60 °C) is designed, and the corresponding LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode exhibits a higher discharge capacity of 84.2 mAh g−1 and energy density of 195.0 Wh kg−1cathode than that of the cathode (1.6 mAh g−1 and 3.9 Wh kg−1cathode) working in commercial EC-based electrolytes for NCM811‖ Li cell at −60 °C. Molecular dynamics simulation, Raman spectra, and nuclear magnetic resonance characterizations reveal that rich mobile Li+ and the unique solvation structure with weak Li+ coordination are achieved in MP-based electrolyte, which collectively facilitate the Li+ transference process at low temperature. This work provides fundamental insights into low-temperature electrolytes by regulating solvation structure, and offers the basic guidelines for the design of low-temperature electrolytes for LMBs.  相似文献   

15.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

16.
There is an urgent demand to develop earth‐abundant electrocatalysts for efficient and durable water oxidation under mild conditions. A nickel‐substituted cobalt‐borate nanowire array is developed on carbon cloth (Ni‐Co‐Bi/CC) via oxidative polarization of NiCo2S4 nanoarray in potassium borate (K‐Bi). As a bimetallic electrocatalyst for water oxidation, such Ni‐Co‐Bi/CC is superior in catalytic activity and durability in 0.1 m K‐Bi (pH: 9.2), with a turnover frequency of 0.33 mol O2 s?1 at the overpotential of 500 mV and nearly 100% Faradaic efficiency. To drive a geometrical catalytic current density of 10 mA cm?2, it only needs overpotential of 388 mV, 34 mV less than that for Co‐Bi/CC, outperforming reported non‐noble‐metal catalysts operating under benign conditions. Notably, its activity is maintained over 80 000 s. Density functional theory calculations suggest that the O* to OOH* conversion is the rate‐determining step and Ni substitution decreases the free energy on Co‐Bi from 2.092 to 1.986 eV.  相似文献   

17.
Electrochemical water splitting is of prime importance to green energy technology. Particularly, the reaction at the anode side, namely the oxygen evolution reaction (OER), requires a high overpotential associated with O O bond formation, which dominates the energy-efficiency of the whole process. Activating the anionic redox chemistry of oxygen in metal oxides, which involves the formation of superoxo/peroxo-like (O2)n, commonly occurs in most highly active catalysts during the OER process. In this study, a highly active catalyst is designed: electrochemically delithiated LiNiO2, which facilitates the formation of superoxo/peroxo-like (O2)n species, i.e., NiOO*, for enhancing OER activity. The OER-induced surface reconstruction builds an adaptive heterojunction, where NiOOH grows on delithiated LiNiO2 (delithiated-LiNiO2/NiOOH). At this junction, the lithium vacancies within the delithiated LiNiO2 optimize the electronic structure of the surface NiOOH to form stable NiOO* species, which enables better OER activity. This finding provides new insight for designing highly active catalysts with stable superoxo-like/peroxo-like (O2)n for water oxidation.  相似文献   

18.
Molybdenum phosphide (MoP) is a promising non‐noble‐metal electrocatalyst in the hydrogen evolution reaction (HER), but practical implementation is impeded by the sluggish HER kinetics and poor chemical stability. Herein, a novel high‐efficiency HER electrocatalyst comprising MoP nanoflakes intercalated nitrogen‐doped graphene nanobelts (MoP/NG), which are synthesized by one‐step thermal phosphiding organic–inorganic hybrid dodecylamine (DDA) inserted MoO3 nanobelts, is reported. The intercalated DDA molecules are in situ carbonized into the NG layer and the sandwiched MoO3 layer is converted into MoP nanoflakes which are intercalated between the NG layers forming the alternatingly stacked MoP/NG hybrid nanobelts. The MoP nanoflakes provide abundant edge sites and the sandwiched MoP/NG hybrid enables rapid ion/electron transport thus yielding excellent electrochemical activity and stability for HER. The MoP/NG shows a low overpotential of 94 mV at 10 mA cm−2, small Tafel slope of 50.1 mV dec−1, and excellent electrochemical stability with 99.5% retention for over 22 h.  相似文献   

19.
Flat gold prisms that have micrometer-scale edge length and nanometer-scale thickness (micro-prisms, as defined by edge length of prisms) were synthesized through a facile solution-phase synthetic method. Two effective measures were adopted in order to prepare the well-defined micro-prisms: (i) selecting poly(N-vinylpyrrolidone)(PVP) as the shape-directing agent to induce the preferential growth of small gold nanocrystals and (ii) using a weak reducing agent, ethylene glycol (EG), to slow down the reduction rate of AuCl4? ions. Besides, the light played an important role in inducing the formation of tiny nanoprisms in the early stages of Au(III) ion reduction. Considering that gold nanoclusters have a strong tendency to heterogeneous nucleation at solid/liquid interfaces followed by the preferential planar growth, gold prism thin films were thus fabricated on glass substrates.  相似文献   

20.
Reduction of interlayer Co2+ ions in expandable fluorine mica has been attempted. The polyol process using diethylene glycol as a reducing agent was employed. The co2+ -exchanged mica was refluxed at about 225–235 °C in liquid diethylene glycol for 10–120 minutes. Consequently, zero-valence Co metal (Co0) intercalated mica having a metallic grey colour was obtained by in situ reduction of interlayer Co2+ ions, showing different properties from Co2+ -exchanged mica as a precursor. The layer charge of Co-metal-intercalated mica is compensated by protons which are produced through the course of reduction of interlayer Co2+ ions. The reduced sample heated at 350 °C, which had no organic molecules, exhibited a basal spacing of 1.28 nm, indicating the presence of 0.34 nm cobalt metal clusters after subtracting the thickness of the host silicate layer. During the process of reduction in diethylene glycol, cobalt metal particles were expelled from the interlayers which grew to about 0.5 m onto the external surfaces of host mica crystals with increasing refluxing time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号