首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
温室气体特别是二氧化碳的大量排放,是导致全球变暖的主要原因之一。根据国际能源署的报道,碳捕集利用和封存(CCUS)技术是缓解全球气候变化的重要措施之一,约占累计碳减排量的15%。原位矿化封存技术基于快速CO2矿化机制,以镁铁质岩石和超镁铁质岩石(玄武岩、橄榄岩等)地层为碳封存位点,利用CO2与富含Ca、Mg元素矿物的矿化反应,转变为稳定的碳酸盐,从而达到永久且高效封存CO2的目的。冰岛和美国的中试项目已经证明了该技术的可行性,但中国尚未进行相关示范项目。本文介绍了原位矿化封存技术的机理、CO2封存潜力的评估手段及其面临的风险与挑战,讨论了已开展的案例项目及其技术细节,梳理了实施该技术所必需的选址关键参数(包括源-汇距离、矿物类型、注入性、封闭性等),并基于目前研究对其前景进行展望,以期提高我国对原位矿化技术的认识和重视,为推动该领域进一步发展提供理论指导。  相似文献   

2.
温室效应引起的全球变暖已经影响到人类的生存和发展,CO2减排刻不容缓。CO2矿物碳酸化作为一种CO2减排技术,受到越来越多的关注。相对于传统天然矿化原料,碱性工业固废具有反应速率快、碳酸化效率更高、能耗低等特点,并且利用碱性工业固废进行CO2矿化还可以产出高附加值产物用于化工、建筑等领域。本文主要综述了碱性工业固废的矿化机理,利用碱性工业固废(粉煤灰、钢渣、电石渣)进行CO2碳酸化的研究进展及吸收-矿化一体化(IAM)技术。对于以碱性工业固废为原料的碳酸化技术,未来应进一步加强机理和生命周期影响评价的研究并优化工艺流程;针对IAM工艺今后应开发出高效、经济的吸收剂和封存能力更好的矿化原料,并加强对IAM工艺反应机理的研究。  相似文献   

3.
CO2和工业固体废弃物的排放量逐年上升,威胁人类的生存和发展,世界各国迫切寻求降碳减排的解决路径。研究人员基于钙、镁元素与CO2反应生成稳定的碳酸盐反应,开发出一系列CO2矿化工艺,实现CO2的永久封存。为实现CO2的大规模封存和含钙固废的高值化利用,降低矿化成本,选取廉价易得的含钙工业固体废弃物为矿化原料,从多晶型微纳米碳酸钙的制备入手,总结了含钙工业固废浸取和CO2间接矿化的最新研究进展,介绍了含钙工业固废间接矿化常用的浸取剂,并着重分析了间接矿化制备微纳米碳酸钙时反应条件和晶型控制剂对碳酸钙晶型和形貌产生的影响,对其控制原理进行了解释说明,总结了CO2间接矿化含钙固废当前存在的技术难点,展望了未来的研究重点。国内外结果表明,调变温度、pH、搅拌速率以及CO2通气速率等矿化反应条件或添加晶型控制剂能有效控制碳酸钙的晶型、形貌和尺寸。利用含钙工业固体废弃物间接矿化CO2制备微纳米碳酸钙能够...  相似文献   

4.
CO2捕集、利用与封存(CCUS)技术作为应对全球气候与环境危机的重要技术手段受到重视。利用水泥基材料的矿化反应吸收CO2不仅可实现CO2永久封存,改善产品力学性能,还能减少混凝土中水泥用量,从而减少大量CO2排放。以OPC浆体为原材料,系统性研究不同因素(温度、CO2添加量和CaCO3掺杂量)对水泥固碳性能及力学性能的影响,并测试分析了矿化产物的组成、微观形貌及微观孔结构,总结了温度、CO2与CaCO3对OPC净浆矿化过程的相互影响机制,并归纳了外加碳酸钙下二氧化碳矿化OPC浆体的微观反应过程模型。结果表明,70℃下固碳率为77.99%,28 d强度提升6.7%,CO2最佳添加量为0.5%,添加CaCO3能提高OPC浆体的固碳率和强度,CaCO3添加量为10%时,CO2掺量可增至3%,同时保持强度增益。  相似文献   

5.
随着人类社会工业化进程的加快,温室气体排放量随之增加,导致温室效应加剧。在所有温室气体中,CO2占比最多、贡献最大,被认为是引起全球变暖的主要因素。人为排放的CO2主要来自工业生产过程中化石燃料的燃烧,为实现碳中和目标,除了推广清洁能源、提高能源利用效率和增加植物碳汇等措施外,对工业排放的CO2进行捕集封存必不可少。目前限制CO2捕集和分离工艺应用的主要因素是成本过高,为解决该问题,开发第2代低能耗固体CO2吸附材料对推动工业源CO2减排具有重要意义。Li4SiO4凭借较高的吸附容量、较低的再生能耗和成本在高温CO2捕集领域具有良好的应用前景。为推进Li4SiO4材料在碳捕集、利用和封存(CCUS)工艺中的应用,综述了Li4SiO4基吸附材料的研究进展,介绍了不同合成方法及合成条件对Li4  相似文献   

6.
随着经济和社会的快速发展,世界各国对于温室气体排放所引起的全球变暖问题越来越重视。我国作为全球最大的CO2排放国,短期内以煤炭及煤电为主的基本能源结构模式很难有根本转变,面临十分严峻的减排形势。CO2的减排问题已成为制约该地区能源化工产业发展的最大瓶颈之一,为了满足经济社会可持续发展的迫切需要,我们必须采取措施来控制CO2的大量排放。CO2地质封存已成为一种日益成熟的技术方法,并已成为了目前全球公认的进行CO2大规模减排的最有效途径之一。页岩储层CO2地质封存联合页岩气增采技术(CO2-ESGR)是一种新型的CO2地质封存及页岩气开发技术。该技术以超临界或液相CO2代替水力压裂页岩,利用CO2吸附页岩能力比CH4强的特点,置换CH4,从而提高页岩气产量和生产速率并实现CO2地质封存,减少温室气体排放。主要...  相似文献   

7.
全球气候变化是目前世界面临的严峻问题之一,CO2等温室气体的过量排放是导致全球气候变暖的主要原因。碳捕集、利用和封存(CCUS)是现阶段解决全球气候变暖的必要手段,基于有机胺的化学吸收法因捕集效率高、烟气适应性好,成为目前燃煤燃气电厂捕集CO2的关键技术路径。本文详细介绍了胺法CO2捕集技术的基本原理及胺法CO2捕集技术工艺流程,分析了新型吸收剂的开发、节能技术的优化等降低胺法CO2捕集技术再生能耗和成本的关键手段。结合研究现状以及烟气胺法CO2捕集需求,对其未来的发展趋势进行展望。  相似文献   

8.
为避免温室效应带来的负面影响,CO2减排已成为目前的当务之急。CO2矿物碳酸化作为一种有潜力的CO2减排技术,受到了学者们的广泛关注。CO2矿物碳酸化方法主要包括直接干法碳酸化、直接湿法碳酸化以及间接碳酸化等不同工艺过程。目前,CO2直接或间接碳酸化方法面临的关键挑战是提升CO2碳酸化反应动力学特性;反应速率慢、碳酸化效率较低是当前该技术的主要问题。传统CO2胺类化学吸收法具有吸收速率快、吸收容量大和吸收剂能循环再生的优点,但能耗和运行成本较高。将CO2胺类化学吸收法与CO2碳酸化过程结合而开发的CO2吸收-矿化一体化技术(IAM)不仅解决了传统工艺高能耗、低转化率的问题,而且使工艺流程简化、成本降低,有利于应用于工业化。本文主要综述了近年来CO2矿化技术的研究进展,对比了各种工艺技术路线的不同特点,并分析指出加强对IAM工艺反应机理的研究以及开发出高效、经济的吸收剂和矿化原料,将是该工艺未来研究的重点和关键。  相似文献   

9.
CO2矿物封存技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
CO2捕集与封存技术是目前实现碳减排最有效的方法。其中,CO2矿物封存(又称CO2矿化)是利用CO2与含钙镁硅酸盐矿物进行反应使CO2以稳定的碳酸盐形式永久储存起来。本文首先介绍了CO2矿化的基本原理和技术路线,其中间接矿化反应条件较温和、矿化效率更高、得到的产物也更纯,因此对于CO2间接矿化的研究也更广泛。本文综述并对比了天然矿物及工业固废矿化CO2的研究进展,指出工业固废更有利于CO2矿化过程。工业固废矿化CO2过程矿化CO2的同时处理了工业固废,实现以废治废,因此它在经济上也是具有一定优势。在此基础上,本文以高炉渣为代表,介绍了其矿化CO2的详细研究进展,指出采用可循环的助剂、回收高炉渣中有价元素可提升矿化过程经济性。对于CO2矿化过程的放大试验、生命周期的评估及低能耗的新工艺开发将是CO2矿物封存实现工业化的关键。  相似文献   

10.
详细介绍了工业排放CO2捕集的关键技术,着重综述了CO2化学转化、生物转化、能源开发及矿化利用等资源化利用和地质封存技术,初步探讨了碳中和目标下CO2资源化利用的发展方向,最后提出了从国家、企业、教育等多方面入手,相辅相成,稳步实现我国低碳转型战略目标的建设性意见。  相似文献   

11.
本文系统梳理分析了水泥不同种类和各工序的CO2排放特征,其中,工艺、燃料直接CO2排放占比达90%,与物料中碳酸盐的含量正相关,与燃料发热量和利用率负相关,电力间接CO2排放占比约10%,特种水泥由于减少了碳酸盐分解造成的碳排放,总体碳排放量较低。新型干法水泥生产过程可分为生料制备、熟料煅烧和水泥粉磨三个阶段,工艺和燃料CO2排放主要发生在熟料煅烧阶段,其尾气中CO2浓度一般在11%~29%。研究分析了碳替代/碳捕集等控碳技术、CO2资源化利用技术。水泥厂碳替代主要是原料替代、熟料或水泥替代、燃料替代等,可分别实现减碳10%、25%~50%和30%以上;碳捕集主要有富氧燃烧和烟气CO2捕集,水泥窑富氧燃烧技术有全氧燃烧和分解炉全氧燃烧技术两种。捕集技术主要采用化学吸收法、固体吸附法;在CO2综合利用方面,针对水泥厂的特殊应用场景,矿化具有较好的应用效果,如采用混凝土养护技术,制备高附加值的微纳米碳酸钙等。  相似文献   

12.
CCUS是指CO2捕集、利用和封存,是解决全球气候变暖、控制CO2排放的重要技术手段,CO2驱油是CO2利用的主要形式之一。本文阐述了CO2混相驱、非混相驱和近混相驱的驱油机理、影响因素及国内外发展简况,系统整理并归纳了国内外CO2防气窜及提高波及体积技术,重点介绍了水气交替技术、化学封窜剂、CO2泡沫驱、碳化水驱和增稠的CO2驱,包括基本做法、封气窜原理、研究进展等,探讨了CO2驱油过程中存在的问题及解决对策,为碳中和背景下非常规油气的绿色开发提供理论指导和技术支持。  相似文献   

13.
为应对全球气候变暖等环境问题,碳捕集、利用和封存(CCUS)技术得到了越来越多的关注。CO2加氢制甲醇既可以实现CO2资源化利用,也可实现可再生能源的化学储存,是一种重要的CCUS技术。为探索优化CO2加氢制甲醇的工艺,在固定床反应器中测试了商用Cu-ZnO/Al2O3催化剂在CO2加氢制甲醇过程中的催化性能。探究了催化剂在448.15~543.15 K,1~3 MPa, H2、CO2物质的量比3~9的催化效果。结果表明,CO2转化率随反应温度升高而增加;甲醇选择性主要受温度和氢碳物质的量比影响:温度越高甲醇选择性越低,氢碳物质的量比越大甲醇选择性越高;压力升高对CO2转化率和甲醇选择性均有促进作用。以甲酸盐加氢步骤为反应的速率控制步骤,在LHHW动力学理论基础上推导建立了该催化剂用于CO2加氢制甲醇的反应动力学模型,在MATLAB中构建模型优化函...  相似文献   

14.
赵锦波  卞凤鸣 《化工进展》2022,41(Z1):524-535
针对CO2排放这一全球性问题,我国明确2030年碳达峰、2060年碳中和的战略目标。发展高效CO2化学转化技术是推进该战略目标实现的关键。通过CO2化学利用技术可将廉价无用的温室效应气体转化为具有极高经济价值的重要化工产品,但目前仅有少数技术可以实现工业化应用。在此背景下,本文从CO2利用技术的转化方式出发,阐述了各技术的基本原理,总结了国内外相关团队在CO2化学利用技术基础与应用研究中的进展(包括CO2加氢技术、CO2甲烷重整、CO2酯化反应、CO2矿化利用),指出了目前CO2化学利用技术研究所面临的挑战。最后,本文展望了各种CO2化学利用技术的发展方向,并提出了发展建议。  相似文献   

15.
陈浩佳 《清洗世界》2022,(11):69-71+74
由于全球温室效应不断增强,全球温度上升引发冰川融化,使得海平面上升和海水酸化。二氧化碳(CO2)是人为排放温室气体的主要组成部分,占比四分之三。随着碳中和碳达峰目标的提出,CO2捕集与封存(CCS)技术作为具有前景的策略正在引起全球关注。本文介绍了燃料燃烧前、富氧燃烧和燃烧后烟气中CO2捕集技术,以及吸收、吸附和膜分离等CO2分离技术,提出固体吸附剂对CO2进行吸附和分离是一种具有应用前景技术,从CO2吸附剂方面展望二氧化碳捕集技术研究方向。  相似文献   

16.
不同胺基CO2固体吸收剂的热稳定性能   总被引:1,自引:0,他引:1       下载免费PDF全文
赵文瑛  王丽香  李振山  蔡宁生 《化工学报》2012,63(10):3304-3309
为应对温室效应对全球气候的影响,CO2的捕集和封存(carbon capture and storage,CCS)技术成为近年来的研究热点.我国能源消费结构以煤为主,煤燃烧排放的CO2约占我国CO2排放总量的82%[1],主要用于发电.因此研究燃煤电站烟气中脱除CO2的技术具有重要意义.  相似文献   

17.
随着工业技术的飞速发展和化石能源的大量使用,CO2排放量逐年增加,其引起的全球变暖是全球环境和经济领域最关注的话题之一。CO2捕集利用与封存技术(CCUS)是我国实现碳达峰、碳中和目标的关键技术,对我国减少CO2排放、构建生态文明具有重大意义。微藻具有生长速度快、对极端环境适应性强、生产成本低等优点,其介导的CCUS技术能吸收固定CO2并将其转化为高附加值产品。该过程中微藻种类对确定CO2固定效率和生物质产量起至关重要的作用。目前许多综述性研究都集中在利用微藻进行碳捕集、利用和储存方面,鲜见关于提高微藻碳捕集效率的最新策略相关综述。基于微藻固碳技术的发展现状,系统讨论了微藻的光合作用和固碳机理。回顾了微藻菌株固定CO2最新进展,重点关注用于燃煤烟气的微藻改良和改进。全面总结了提高微藻光合效率的最新趋势和策略。随机诱变、适应性实验室进化和基因工程等几种修饰和改良微藻菌株的策略可用于产生理想的藻种。其中,基因工程不仅可截断集光复合体(LHC)的天线尺寸来提高光...  相似文献   

18.
陈扬  吴烨  刘兴  刘冬 《洁净煤技术》2023,(4):109-120
利用碳捕集、封存系统(CCS)减排燃煤电厂CO2是碳中和必经之路,但目前较高的碳捕集、封存成本限制了该技术的发展和应用。针对某300 MW燃煤机组,利用Aspen Plus模拟软件提出并搭建了基于碱金属基干法碳捕集、封存耦合供冷系统,利用凝结水循环进行深度耦合,达到回收CO2压缩封存过程中冷量的目的,有效降低碳捕集成本。在不耦合供冷过程的情况下,通过回收CO2吸附过程释放的反应热,降低碳捕集系统单位耗电量至413.79 kWh/t(以CO2计,下同);此时CO2压缩封存过程能耗仍巨大。为此,在上述碳捕集封存系统进一步耦合供冷机组。通过模拟计算可得集成后新系统降低了CO2压缩程度,此时加压封存过程的单位耗电量降至247.54 kWh/t,降低了2.3%,CO2捕集封存总运行成本进一步降低33.77%。此外,供冷机组的引入还会降低额外投资成本,如通过提高CO2吸附床内的换热温差,减少受热面布置量和吸附剂装载量,从而减...  相似文献   

19.
提出一种溶剂萃取与Ca2+碳酸化的耦合反应过程,以三丁胺为萃取剂将HCl从水相萃取到有机相,在固定CO2的同时实现CaCl2的碳酸化,副产碳酸钙与氯化铵。实验结果显示,超过98%的Ca2+在1400s内沉淀为碳酸钙,反应后有机相迅速与水相实现分层,并通过与氨水反应再生,三丁胺回收率约为98%。采用粒径分布与显微镜观察证明了Ca2+沉淀过程发生在油包水结构中。以15%浓度的CO2作为碳源,反应时间为2700 s时,Ca2+沉淀率达到98.31%,显示该工艺将高成本的CO2捕集过程和封存过程集成,可处理低浓度烟气中的CO2。过程无须CO2捕集费用以及热量输入,同时副产碳酸钙和氯化铵产品,有望缓解常规CO2捕集封存技术高成本的难题。  相似文献   

20.
搭建了鼓泡床碳酸化反应器,研究常温常压下电石渣直接液相碳酸化矿化封存CO2的能力,揭示了重要操作参数表观气速、液固比和CO2浓度对电石渣矿化封存CO2能力和碳酸化效率的影响规律。同时构建响应面模型,分析各参数对电石渣碳酸化效率的影响强度,优化获得最大碳酸化效率及相应操作工况。结果表明,增加气速有利于钙离子溶解和CO2吸收,但反应器中过高气速易导致气相通道效应,不利于气液充分接触。当液固比降低,溶液中钙离子浓度提高,更有利于碳酸化反应,但液固比过低会影响固液间传质。适当增加CO2浓度有利于提高碳酸化效率,但CO2浓度增至到一定值后,对碳酸化效率影响降低。响应面建模分析发现,各因素对碳酸化效率影响顺序为:液固比>CO2浓度>表观气速。优化结果发现碳酸化效率最高为93.58%,工况为表观气速0.07m/s,液固比为8.26mL/g和CO2体积分数为20.91%。研究可知,鼓泡床中常温常压下电石渣直接液相加速碳酸化反应,具有较大的CO2固定量和高的碳酸化效率,实验结果为电石渣加速矿化封存CO2技术的发展提供了基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号