首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-phase nanocomposite heteroepitaxial films with vertical microstructures hold great promise for various (multi)functional (e.g., multiferroic) electronic device applications. With the aim of creating addressable arrays, it is necessary to form spontaneously ordered structures over large areas. However, such structures have not, so far, been demonstrated. We have recently produced remarkable spontaneously ordered phase assemblies and find that these structures form concomitantly with 2-D vertical strain control, i.e., strain in the 2 phases is controlled along the vertical interface between them rather than being influenced by the substrate. In this paper, we report on our findings in the BiFeO3 and BaTiO3 ferroelectric systems.  相似文献   

2.
Vertically aligned nanocomposite thin films with ordered two phases, grown epitaxially on substrates, have attracted tremendous interest in the past decade. These unique nanostructured composite thin films with large vertical interfacial area, controllable vertical lattice strain, and defects provide an intriguing playground, allowing for the manipulation of a variety of functional properties of the materials via the interplay among strain, defect, and interface. This field has evolved from basic growth and characterization to functionality tuning as well as potential applications in energy conversion and information technology. Here, the remarkable progress achieved in vertically aligned nanocomposite thin films from a perspective of tuning functionalities through control of strain, defect, and interface is summarized.  相似文献   

3.
Very recently, vertically aligned nanocomposite (VAN) thin films have served as an intriguing platform to obtain significant insights of the fundamental physics and achieve novel functionalities for potential technological applications. In this review article, we have investigated the lattice mismatch and vertical interfacial coupling in representative VAN systems for probing strain engineering in the vertical direction. Systematic studies of ferroelectricity, low field magnetoresistance and magnetoelectric coupling in VAN architectures have been reviewed and compared. The enhancement and tunability of the physical properties are attributed to the effective strain-, phase- and interface- couplings in VAN films. In the end, important and promising research directions in this field are proposed, including understanding the growth mechanisms of VAN structures, and creating more effective couplings for enhanced functionalities and ultimate device applications.  相似文献   

4.
Coassemblies of block copolymers and inorganic precursors offer a path to ordered inorganic nanostructures. In thin films, these materials combined with domain alignment provide highly robust nanoscopic templates. We report a simple path to control the morphology, scaling, and orientation of ordered mesopores in organosilicate thin films through the coassembly of a diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric organosilicate precursor that is selectively miscible with PEO. Continuous films containing cylindrical or spherical pores are generated by varying the mixing composition of symmetric PS-b-PEO and an organosilicate precursor. Tuning interfacial energy at both air/film and film/substrate interfaces allows the control of cylindrical pore orientation normal to the supported film surfaces. Our method provides well-ordered mesoporous structures within organosilicate thin films that find broad applications as highly stable nanotemplates.  相似文献   

5.
A multi-performance MWCNT-reinforced chitosan nanocomposite was fabricated by two methods: a freeze-drying process associated with the sublimation and compression (SAC) method; and the casting-evaporation (CE) method. We obtained ordered and multilayered structures with limited porosity, and well-dispersed MWCNT structures of the chitosan nanocomposite, especially with the SAC method. In the case of the nanocomposite films prepared by the CE method, the mechanical strength and elongation were significantly increased by up to about 40% compared with the pure chitosan films. On the other hand, the ordered and porous multilayered pure chitosan films prepared by the SAC method showed significantly lower tensile strength and elongation compared to the pure solid chitosan films. However, the relative enhancement of the mechanical properties of multilayered MWCNT/chitosan nanocomposites with porosity was higher, especially in terms of the elongation, which showed a twofold improvement in strain. The relaxed bond, which could be a relatively strong hydrogen bond, between the functional groups in the chitosan chains and the functionalized surface of the MWCNTs might be stretched under stress, thereby improving the ductility of the multilayered nanocomposite films. In addition, the viscoplastic behavior of the films by the CE method could become more active with increasing strain rate. Interestingly, ordered and porous pure chitosan films did not reveal the viscoplastic behavior; it rather presented strain softening and viscoelastic characteristics. However, the interaction between the chitosan chains and the surface-modified MWCNTs could regenerate viscoplasticity of the chitosan films.  相似文献   

6.
The fabrication of polymeric materials with ordered submicron-size void structures is potentially valuable for many applications such as catalysts, separation and adsorbent media. This paper reports the preparation of macroporous protein multilayer films with regular voids using silica nanospheres as templates. Both monodisperse silica colloids and highly ordered assembly silica multilayer films are used as templates to prepare microporous bovine serum albumin multilayer films with ruleless and ordered submicron-sized voids. Glutaraldehyde is used as a crosslinking agent to form a firm net-like protein film on the surface of silica templates. The microporous protein film is obtained after removing of silica templates. Compare with polymer film, protein film has good biocompatibility and biodegradability which will be beneficial to its biological applications.  相似文献   

7.
Flexible strain sensors have experienced growing demand due to their several potential applications, such as personalized health monitoring, human motion detection, structural health monitoring, smart garments, and robots. Recently, several academic results have been reported concerning flexible and stretchable strain sensors. These reports indicate that the materials and design methods have an important influence on the performance of strain sensors. Carbon-based nanomaterials including carbon-based nanofibers, carbon nanotubes, graphene, and carbon black nanoparticles play a key role in the fabrication of flexible strain sensors with excellent properties. In terms of design, carbon-based nanomaterials are generally combined with polymers to maintain the flexibility and stability of a strain sensor. Various combined methods were successfully developed using different assembly structures of carbon-based nanomaterials in polymers, such as uniform mixing and ordered structures, including films, fibers, nanofiber membranes, yarns, foams, and fabrics. The working mechanisms of the flexible strain sensors, including changing the conductive network between overlapped nanomaterials, tunneling effect, and crack propagation, are also different compared with that of traditional semiconductor and metal sensors. The effects of the carbon-based nanomaterial structures in polymers on the strain sensing performance have been comprehensively studied and analyzed. The potential applications of flexible strain sensors and current challenges have been summarized and evaluated. This review provides some suggestions for further development of flexible and stretchable strain sensors with outstanding performance.  相似文献   

8.
Solution processing of conjugated polymers into ordered self‐assembled precursors has attracted great interest in the past years owing to the ability to manipulate their structural and physical properties. Regioregular poly(3‐hexylthiophene) (P3HT) has become the benchmark polymer in this scenario, where ordered lamellar structures significantly improve carrier mobility of the thin films due to increased crystallinity, extended intrachain conjugation, and ordered interchain π‐stacking. Here, a new photoinduced approach is presented for the generation of highly ordered P3HT aggregate structures that is amenable to the use of visible light to control the aggregate formation. Strong intra‐ and interchain interactions in the solution precursors allow for permanent formation of localized and delocalized polarons that are stable for months. Spin‐coated thin films are found to preserve, in part, the morphological and physical properties of the aggregated P3HT solution precursors with high degree of crystallinity and short π‐stack interchain distances.  相似文献   

9.
Layer-by-layer (LBL) assembly is one of the most ubiquitous coating techniques today. It also offers a pathway for multifunctional/multicomponent materials with molecular-scale control of stratified structures. However, technological applications of LBL are impeded by laborious and fluid-demanding nature of the process. While vertical organization of LBL films is natural for this technique, the control of lateral organization of the films is fairly difficult. Using the deposition of carbon nanotubes (SWNTs) and other nanoscale colloids, we introduce here a new approach to LBL based on dewetting phenomena, d-LBL. Its strengths include: (1) elimination of rinsing steps, (2) significant acceleration of the process, (3) improvement of lateral organization of LBL films, and (4) ability to produce nanostructured coatings from colloids when classical LBL fails. The generality of d-LBL can compete with traditional LBL and is demonstrated for cellulose nanowires, polyelectrolyte pairs, and semiconductor nanoparticles, metal oxides, and Au nanorods.  相似文献   

10.
Silica films under present reactive electron beam deposition conditions have depicted a novel self-organized surface grain structures when probed through atomic force microscopy, 2D fast Fourier transform and glancing incidence X-ray diffraction techniques. The formation of such ordered surface grain structures is observed to be strongly correlated to the nucleation and growth process of the silica films. However, the nature of the substrate (amorphous or crystalline) and multilayer geometries have influenced the shapes, sizes and abundances in the grain structures and the ordering. The strain mediation of such ordered structures when buried under polycrystalline layers like Gd2O3 have shown to influence both the grain size as well as roughness. A variety of grain structure evolutions and morphological changes in silica layers were noticed in different multilayer geometries. It is, hence, inferred that by appropriately using combinations of these materials, it is possible to have a control over the multilayer morphology and grain structures, which is a very relevant factor in developing precision ultraviolet laser coatings.  相似文献   

11.
Liu CY  Li WS  Chu LW  Lu MY  Tsai CJ  Chen LJ 《Nanotechnology》2011,22(5):055603
A method was developed to grow ordered silicon nanowire with NiSi(2) tip arrays by reacting nickel thin films on silica-coated ordered Si nanowire (NW) arrays. The coating of thin silica shell on Si NW arrays has the effect of limiting the diffusion of nickel during the silicidation process to achieve the single crystalline NiSi(2) NWs. In the meantime, it relieves the distortion of the NWs caused by the strain associated with formation of NiSi(2) to maintain the straightness of the nanowire and the ordering of the arrays. Other nickel silicide phases such as Ni(2)Si and NiSi were obtained if the silicidation processes were conducted on the ordered Si NWs without a thin silica shell. Excellent field emission properties were found for NiSi(2)/Si NW arrays with a turn on field of 0.82 V μm(-1) and a threshold field of 1.39 V μm(-1). The field enhancement factor was calculated to be about 2440. The stability test showed a fluctuation of about 7% with an applied field of 2.6 V μm(-1) for a period of 24 h. The excellent field emission characteristics are attributed to the well-aligned and highly ordered arrangement of the single crystalline NiSi(2)/Si heterostructure field emitters. In contrast to other growth methods, the present growth of ordered nickel silicide/Si NWs on silicon is compatible with silicon nanoelectronics device processes, and also provides a facile route to grow other well-aligned metal silicide NW arrays. The advantages will facilitate its applications as field emission devices.  相似文献   

12.
三维有序大孔磁性材料在光子晶体和新功能磁性材料方面具有潜在优势.采用电化学沉积方法制备三维有序大孔Fe-Ni合金,将聚苯乙烯(PS)微球在ITO导电玻璃上自组装高度有序的胶体晶体阵列作为模板,向模板空隙中电沉积Fe-Ni合金,去除PS模板后获得六方密排多孔结构的Fe-Ni合金薄膜.采用金相显微镜和扫描电子显微镜对多孔薄膜的微观结构进行表征,结果表明,多孔薄膜孔径的大小由模板聚苯乙烯微粒的粒径决定,不同孔径的薄膜由于布拉格衍射呈现出不同的颜色.通过调整沉积时间和沉积温度可以控制有序大孔材料的结构和厚度.  相似文献   

13.
We present a new method for making functional patterns in thin films consisting of highly ordered arrays of complex, submicrometer structures, deposited at oblique flux incidence angles using the glancing angle deposition technique. By performing physical vapor deposition on direct write seed layers with intentional point and line lattice defects, we are able to generate embedded air-filled linear and planar patterns in the films in a single-step transfer approach with no need for conventional postdeposition micromachining. The uniformity and porosity of the thin films is fully maintained, with minimal impact on the film morphology adjacent to the patterns. This ability to engineer air-filled patterns is crucial to several promising thin-film applications, including photonic band gap crystals and microfluidics.  相似文献   

14.
Block copolymers (BCP) can self‐assemble into nanoscale patterns with a wide variety of applications in the semiconductor industry. The self‐assembly of BCPs is commonly accomplished by solvent vapor or thermal annealing, but generally these methods require long time (few hours) to obtain nanostructured thin films. In this contribution, a new and ultrafast method (using microwaves) is proposed—high temperature solvent vapor annealing (HTSVA), combining solvent vapor annealing with thermal annealing, to achieve fast and controllable self‐assembly of amphiphilic BCP thin films. A promising carbohydrate‐based BCP capable of forming cylindrical patterns with some of the smallest feature sizes is used for demonstrating how to obtain a highly ordered vertical cylindrical pattern with sub‐10 nm feature sizes in few seconds by HTSVA. HTSVA provides not only a simple way to achieve BCP fast self‐assembly in practical applications but also a tool to study the self‐assembly behavior of BCPs under extreme conditions.  相似文献   

15.
Mesoscopic 2-D ordering of inorganic/organic hybrid materials   总被引:1,自引:0,他引:1  
Organic–inorganic hybrid materials with micronsized (i.e., mesoscopic) network structures are expected to have interesting properties and applications in various fields, such as separation, catalysis, biomineralization, or quantum optics. Here a new method is introduced to produce thin films of two-dimensionally ordered honeycomb structures. Casting a chloroform solution of a mixture of organic amphiphiles with metal acetylacetonates or -alkoxides at high atmospheric humidity leads to the formation of a closely packed layer of water droplets on top of the organic solvent. The water acts as a template, After evaporation of the chloroform and the water, a honeycomb structure remains. Pyrolysis of the metal alkoxides films lead to the formation of microporous metal oxide (e.g., anatase, one of the catalytic active titanium oxides).  相似文献   

16.
Ultrathin film preparations of single-walled carbon nanotube (SWNT) allow economical utilization of nanotube properties in electronics applications. Recent advances have enabled production of micrometer scale SWNT transistors and sensors but scaling these devices down to the nanoscale, and improving the coupling of SWNTs to other nanoscale components, may require techniques that can generate a greater degree of nanoscale geometric order than has thus far been achieved. Here, we introduce linker-induced surface assembly, a new technique that uses small structured DNA linkers to assemble solution dispersed nanotubes into parallel arrays on charged surfaces. Parts of our linkers act as spacers to precisely control the internanotube separation distance down to <3 nm and can serve as scaffolds to position components such as proteins between adjacent parallel nanotubes. The resulting arrays can then be stamped onto other substrates. Our results demonstrate a new paradigm for the self-assembly of anisotropic colloidal nanomaterials into ordered structures and provide a potentially simple, low cost, and scalable route for preparation of exquisitely structured parallel SWNT films with applications in high-performance nanoscale switches, sensors, and meta-materials.  相似文献   

17.
本文探讨了一种制备二氧化钛高度有序多孔结构的方法及其在染料敏化太阳电池中的应用。采用聚苯乙烯悬浮液,采取垂直沉积法得到了聚苯乙烯胶体晶体;以该模板制备了高度有序的纳米二氧化钛反蛋白石多孔薄膜。对胶体晶体模板和二氧化钛反蛋白石有序膜的微观结构进行表征和讨论。用所制得的二氧化钛反蛋白石有序膜组装成染料敏化太阳电池。通过电流...  相似文献   

18.
Self‐assembly techniques are widely used to grow ordered structures such as, for example, opal‐based photonic crystals. Here, we report on photonic glasses, new disordered materials obtained via a modified self‐assembling technique. These random materials are solid thin films which exhibit rich novel light diffusion properties originating from the optical properties of their building blocks. This novel material inaugurated a wide range of nanophotonic materials with fascinating applications, such as resonant random lasers or Anderson localization.  相似文献   

19.
Park WI  Yoon JM  Park M  Lee J  Kim SK  Jeong JW  Kim K  Jeong HY  Jeon S  No KS  Lee JY  Jung YS 《Nano letters》2012,12(3):1235-1240
We report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by a block copolymer self-assembly process. Optimized surface functionalization provides stacking structures of Si-containing block copolymer thin films to generate uniform memristor device structures. Both the silicon oxide film and nanodot memristors, which were formed by the plasma oxidation of the self-assembled block copolymer thin films, presented unipolar switching behaviors with appropriate set and reset voltages for resistive memory applications. This approach offers a very convenient pathway to fabricate ultrahigh-density resistive memory devices without relying on high-cost lithography and pattern-transfer processes.  相似文献   

20.
Transition metal oxides offer a wide spectrum of properties which provide the foundation for a broad range of potential applications. Many of these properties originate from intrinsic coupling between lattice deformation and nanoscale electronic and magnetic ordering. Lattice strain thus has a profound influence on the electrical, optical, and magnetic properties of these materials. Recent advances in materials processing have led to the synthesis of low-dimensional single-crystal transition metal oxides, namely, epitaxial ultra-thin films and free-standing nano/microwires. Unlike bulk materials, these systems allow external tuning of uniform strain in these materials to tailor their properties and functionalities.This paper provides a comprehensive review of recent developments in studies of strain effects in transition metal oxide ultra-thin films and nano/microwires. In epitaxial thin films, biaxial strain is developed as a result of lattice mismatch between the film and the substrate. By choosing different substrates, a wide range of strain can be established at discrete values that allows for exploration of new phase space, enhancement of order parameters, creation of complicated domain textures, and stabilization of new phases. On the other hand, continuous tuning of uniaxial strain is possible in nano/microwires, where a variety of phase transitions and their dynamics could be probed at the single or few-domain scale. We focus on the work of strain-controlled electromechanical response in piezoelectric oxides and strain-induced metal–insulator transitions as well as domain physics in strongly correlated electron oxides. Related nanoscale device applications such as strain sensing and power generation will be highlighted as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号