首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acrylate monomer having a cyanobiphenyl mesogen (1) was photopolymerized in a liquid-crystalline (LC) ordering field of 4-hexyloxybenzoic acid (2). A blend of (1) and (2) (molar ratio: 1:4), containing a photoinitiator, an inhibitor and a crosslinker, was irradiated with UV light at 120 and 137 °C in order to investigate the effect of an LC phase on the resulting polymer. Here, both temperatures are in the nematic temperature range of the blend, however, the former is in the LC temperature range of the polymer, whereas the latter is in the isotropic temperature range. Scanning electron microscopy of the obtained polymers revealed that the polymer prepared at 120 °C consisted of oriented fine fibers, measuring ca. 400 nm in diameter, while that obtained at 137 °C had a fused bead-like morphology. In addition, we investigated the effect of crosslinking on the morphology by comparing the results from the blends with and without a crosslinker. We found that the LC phase of the phase-separated polymer is one of the necessary conditions for the formation of the fine fiber structures.  相似文献   

2.
The influence of photopolymerization rate, solvent quality, and processing parameters on the photopolymerization-induced phase separated morphology of mixtures of thiol-ene based optical adhesive with mixed solvents of diglyme and water or acetone and isopropanol is described. Upon exposure to UV radiation (∼50 mW/cm2, 365 nm) for periods of 10-90 s, homogeneous solutions of 5-10 wt% NOA65 and NOA81 adhesive formed phase separated structures with characteristic sizes ranging from 400 nm to 10 μm, with increased photopolymerization rates leading to smaller feature sizes. In the systems containing diglyme and water, morphologies formed by phase separation at a lower degree of photopolymerization were characteristic of spinodal decomposition, while morphologies formed by phase separation at a higher degree of photopolymerization exhibited characteristics of viscoelastic phase separation. In the systems containing acetone and isopropanol, interactions between evaporation and photopolymerization-induced phase separation led to the development of more complicated morphologies, including three-dimensional sparse networks. These morphologies provide a combination of connectivity and low overall volume fraction that can significantly enhance the performance of many multi-functional structures.  相似文献   

3.
Photopolymerization behavior and reaction kinetics for a series of multifunctional acrylate monomer(s) and eutectic liquid crystal blends were investigated with particular emphasis on determination of the reaction rate coefficients for propagation and termination steps of photopolymerization. Reaction rate coefficients were determined via real-time infrared spectroscopy and compared with those obtained by photo-differential scanning calorimetry. Effects of various parameters such as LC concentration, light intensity, and monomer functionality on the kinetics were investigated. Phase transition temperature versus composition phase diagrams were established by means of optical microscopy and differential scanning calorimetry for mixtures of triacrylate/liquid crystal (LC) before photopolymerization and after exposing to ultra violet (UV) irradiation under various reaction times. The snapshot phase diagram of the reacting mixtures exhibited isotropic gel, isotropic liquid + nematic, and narrow pure nematic coexistence regions. These coexistence regions were further confirmed by morphological changes of the polymer dispersed liquid crystal films as functions of temperature and concentration using polarized optical microscopy.  相似文献   

4.
H Kihara  T MiuraR Kishi 《Polymer》2002,43(16):4523-4530
The morphology of LC polymer networks prepared by photopolymerization of (LC monomer/LC) blends containing photoinitiator and crosslinker was investigated. For the blends of 4-acryloyloxyhexyloxy-4′-cyanobiphenyl and 4-hexyloxy-4′-cyanobiphenyl, which had the same mesogen, orientation order of LC textures was memorized by photopolymerization, while any structure of LC polymer networks was not observed under an optical microscope because the networks did not phase separate from the low molecular weight LC. However, specific anisotropic phase-separated structures of LC polymer networks were observed for the blends of 4-acryloxloxyhexyloxy-4′-cyanobiphenyl and 4-hexyloxybenzoic acid, which had dissimilar mesogens, on condition that photopolymerization was carried out under the LC phase. If photopolymerization was performed under the isotropic phase conditions, polygonal or continuous phase-separated structures of LC polymer networks were observed for the dissimilar mesogenic blend. These morphologies were strongly dependent on the phase diagrams of (LC monomer/LC) blends and (the corresponding LC polymer/LC) blends. It has been found that the ordering field of LC molecules can give LC polymer networks anisotropic morphologies, which have the long range as the same length scale of LC textures.  相似文献   

5.
Yi Wang  Xian Wan  Xin Wang 《Polymer》2009,50(14):3361-10226
Poly(methylmethacrylate) (PMMA) and polystyrene(PS)/PMMA particles with Janus-like morphology were prepared via the internal phase separation followed by extraction of hexadecane (HD) template. The internal phase separation was triggered by evaporation of dichloromethane (DCM) from the polymer/HD/DCM-in-water emulsion droplets, which led to the formation of HD/PMMA or HD/PMMA/PS microparticles. After extraction of HD with hexane, PMMA or PS/PMMA particles with different morphologies were produced. Poly(vinyl pyrrolidone) (PVP), sodium dodecyl sulfonate (SDS) or sodium dodecyl benzylsulfate (SDBS) was chosen as the emulsifier. The morphology depended on the HD/polymer ratio and the interfacial tensions, which were adjusted by changing the type of the emulsifier and its concentration. With poly(vinyl pyrrolidone) (PVP) emulsifier, PMMA hollow spheres were observed; while with SDS emulsifier, the particles changed from bowl-like particles to hemispheres and truncated spheres with the increase of SDS content. The morphology of PS/PMMA composite particles depended on the ratio of the two polymers. Scanning electron microscopy observation, selective etching and X-ray photoelectron spectroscopy results confirmed that PMMA tended to engulf PS component. With the increase of PMMA/PS ratio, the particles changed the morphology from capped acorn to ‘ball in bowl’ morphology. Furthermore, the particle morphology was simulated via a theoretical model based on the minimum interfacial energy of the system. The simulation results agreed with the experimental observations. Our results indicate that internal phase separation is an effective method to obtain Janus-like microparticles. Via adjusting the composition of the system and the corresponding interfacial tensions, we could tailor the polymer particles with different morphologies.  相似文献   

6.
For the blends of chlorinated polyethylene and copolymer of ethylene with vinyl acetate, the effect of the introducing filler (fumed silica) on the phase behavior of the blends was investigated. It was found that introducing filler in polymer blends depending on its amount lead either to the increase or to the decrease in the temperature of phase separation. At the filler concentration where both components transit into the state of a border layers, the phase separation temperature increases. This effect was explained by the change of the total thermodynamic interaction parameter in the ternary system polymer-polymer-filler. At lower concentration of a filler, the possible effect is the redistribution of the blend components according to their molecular masses between filler surface (in the border layer) and in the bulk that may diminish the phase separation temperature.Effect of the filler on the phase behavior was explained by the simultaneous action of two mechanisms: by changing the thermodynamics of interaction near the surface due to selective adsorption of one of the components and by the redistribution of components according to their molecular masses between the boundary region (near the surface) and in the matrix.The measurements of the kinetics of phase separation and calculation of the parameters of the activation energy are in agreement with proposed mechanisms.  相似文献   

7.
A special device for preparing porous polymer membranes through a thermally induced phase separation (TIPS) process was designed and machined; it included a solution container, a membrane‐forming platform, a coldplate, a temperature‐decreasing system and a temperature‐supervising system. Polystyrene was selected as the model polymer from which to prepare porous membranes using the device due to its better understood TIPS and good biocompatibility with cells. The major factors controlling surface morphology and cell size, ie volume fraction of polystyrene (ϕ2), quench rate and solvent‐removing methods, were studied. Fixing the coldplate temperature, when ϕ2 is as low as 0.045, provokes the formation of round pores on both the bottom and top surfaces of the membrane; when ϕ2 = 0.16 no pores are formed on either surface; when ϕ2 = 0.087 pores form on the top surface, but not on the bottom surface. When ϕ2 = 0.087 the cell size is very small or no pores are formed on the bottom surface, whereas the top surface shows a regular decrease of the pore sizes and an increase of the pore number and pore area, along with a decrease of the coldplate temperature. The side near the coldplate is dense, and the dense layer aligns along the coldplate, while the side away from the coldplate is like a porous foam, the shape of which is isotropic and the surfaces are interconnected with each other three dimensionally. On the top surface of a membrane obtained by ethanol extraction, the cell size is enlarged and the cell number reduced, but the surface morphology and the whole area remained almost the same when compared to samples obtained by freeze drying in the same membrane‐forming conditions. The isotropic, uniformly distributed and round pores suggest that the mechanism of phase separation is a spinodal liquid–liquid decomposition under our research conditions. © 2000 Society of Chemical Industry  相似文献   

8.
This paper studied the morphological development during the fabrication of anisotropic polymeric materials using the thermal-induced phase separation phenomenon (spinodal decomposition) in a model binary polymer solution under a linear spatial temperature gradient using mathematical modeling and computer simulation. The model incorporated the non-linear Cahn-Hilliard theory for spinodal decomposition and the Flory-Huggins theory for polymer solution thermodynamics. Moreover, the slow mode theory and Rouse law were used to account for polymer diffusion. The two-dimensional numerical results showed that an anisotropic morphology was developed when a temperature gradient was imposed along the polymer solution sample. The droplet size and droplet density decrease as temperature increases during the intermediate stage of spinodal decomposition. The spatial temperature gradient, however, had insignificant effect on the droplet shape.  相似文献   

9.
Polyetheretherketone (PEEK) is a high-performance semi-crystalline thermoplastic polymer with outstanding mechanical properties, high thermal stability, resistance to most common solvents, and good biocompatibility. A high temperature thermally induced phase separation technique was used to produce PEEK foams with controlled foam density from PEEK in 4-phenylphenol (4PPH) solutions. Physical and mechanical properties, foam and bulk density, surface area, and pore morphology of foamed PEEK were characterized and the role of PEEK concentration and cooling rate was investigated. Porous PEEK with densities ranging from 110 to 360 kg/m3 with elastic moduli and crush strength ranging from 13 to 125 MPa and 0.8 to 7 MPa, respectively, was produced.  相似文献   

10.
We investigated the shear-induced phase separation and/or concentration fluctuation phenomena in semidilute polymer solution by using computer simulation in 3-dimensional space with Doi-Onuki theory. The enhancement of the concentration fluctuations occurs under shear flow and the scattering function in qx-qz plane exhibits the so-called butterfly pattern as observed experimentally, where qx and qz are the components of the scattering vector for flow direction and neutral direction, respectively. The time changes in the peak position and the intensity at peak position in the scattering function in qx-qz plane can be divided into two regions: the peak position becomes smaller and the peak intensity increases with t, and then the peak position and intensity become constant and the system reaches its steady state. These agree with the experimental results qualitatively. However, the computer simulation results indicate that the peak position at the steady state is almost independent of the shear rate, while the decrease in the peak position at steady state with shear rate has been observed experimentally. This disagreement originates from the use of the simplest constitutive equation in the computer simulation.  相似文献   

11.
J. Rysz 《Polymer》2005,46(3):977-982
Surface directed phase separation in thin polymer blend film has been studied with Monte Carlo simulations using a simple model based on reptation method. Time evolution of phase structure was characterized quantitatively by morphological measures (the Minkowski functionals) in addition to the inspection of concentration versus depth profiles. It was shown that the dynamical scaling hypothesis holds for the Minkowski functionals describing morphologies at the early stages of phase separation in thin films. Two time regimes with different scaling exponents (0.25, 0.33) were found for the growth of the characteristic length scale in the system corresponding to various transport mechanisms (diffusion along- and normally to the interface). Fast decrease in the morphological measures observed at the end of phase separation was attributed to the confinement of the thin film.  相似文献   

12.
Lattice‐patterned liquid crystal (LC)–polymer composites are representative candidates for the practical application of LC materials in high‐quality flexible displays. In this work, multicomponent prepolymers are used for the fabrication of lattice‐patterned LC–polymer composites via photoinduced phase separation. Phase separation behavior between LC and polymer is closely related to the solubility parameter of acrylate monomers in the prepolymers. The lattice structure of polymer walls formed by photoinduced phase separation between LC and polymers is stoichiometrically controlled by the composition of acrylate monomers with various solubility parameters. However, unlike the polymer wall structure, it is impossible to control the LC–polymer wall interfacial properties just by altering the composition of the acrylate monomers. The interfacial properties are found to be predominantly affected by a specific component, a fluorinated acrylate monomer, in the prepolymers, and thus the anchoring energy of polymer walls is controlled by incorporation of the fluorinated acrylate monomer. By selecting an appropriate combination of acrylate monomers in the prepolymers, both the phase separation structure and driving properties of lattice‐patterned LC–polymer composites can be controlled simultaneously. © 2013 Society of Chemical Industry  相似文献   

13.
Jianhua Li 《Polymer》2009,50(6):1526-1030
Macroporous epoxy monolith was prepared via chemically induced phase separation using diglycidyl ether of bisphenol A (DGEBA) as a monomer, 4,4′-diaminodiphenylmethane (DDM) as a curing agent, and epoxy soybean oil (ESO) as a solvent. The morphology of the cured systems after removal of ESO was examined using scanning electron microscopy, and the composition of epoxy precursors/solvent for phase inversion was determined. The phase-separation mechanism was deduced from the optic microscopic images to be spinodal decomposition. The pore structure of the cured monolith was controlled by a competition between the rates of curing and phase separation. The ESO concentration, content of curing agent, and the curing temperature constituted the influencing factors on the porous morphology. The average pore size increased with increasing ESO concentration, increasing curing temperature, and decreasing the content of curing agent.  相似文献   

14.
Microporous cellulose acetate membranes were prepared by a thermally induced phase separation (TIPS) process. Two kinds of cellulose acetate with acetyl content of 51 and 55 mol % and two kinds of diluents, such as 2‐methyl‐2,4‐pentandiol and 2‐ethyl‐1,3‐hexanediol, were used. In all polymer‐diluent systems, cloud points were observed, which indicated that liquid–liquid phase separation occurred during the TIPS process. The growth of droplets formed after the phase separation was followed using three cooling conditions. The obtained pore structure was isotropic, that is, the pore size did not vary across the membrane. In addition, no macrovoids were formed. These pore structures were in contrast with those usually obtained by the immersion precipitation method. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3951–3955, 2003  相似文献   

15.
刘维锦  别亚琴 《应用化工》2008,37(5):530-532
采用湿相分离法制备壳聚糖膜。主要研究成型条件对壳聚糖膜力学性能和膜的形态结构的影响。结果表明,用氢氧化钠和无水硫酸钠的双组分凝固浴可获得具有良好的力学性能和内部结构的壳聚糖膜。当双组分凝固浴浓度为6%NaOH-1.2%Na2SO4,凝固时间为6 h时,制得的壳聚糖膜的拉伸强度可达到12.44 MPa。经过交联改性可以进一步提高壳聚糖膜的机械性能并改善其内部结构。  相似文献   

16.
Depending on the processing conditions in liquid crystal (LC) display manufacturing, LC/polymer composite films may exhibit unusual properties with respect to the compositional and phase behavior of the LC constituents. In particular, we have observed extraordinary large shifts of phase transition temperatures in LC/polymer composites, which can not be explained by preferential solvation or adsorption. Therefore, the influence of real manufacturing conditions such as thermal stress, storage in vacuum, and UV irradiation on the nematic–isotropic (n–i) transition temperatures of commercial nematic mixtures was investigated. Shifts of the clearing temperature of up to 88 K, presumably due to partial evaporation or UV degradation, were observed. Furthermore, we found that annealing may lead to the replacement of the nematic phase by the smectic A phase at room temperature in both LC/polymer composites and pure LC samples. Among the tested commercial LC blends, the mixtures E7, MLC‐6650, and L101 showed the smallest stress effects. Practical consequences of our results are discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Jia-Lin Li  Xu-Ming Xie 《Polymer》2009,50(9):2172-1262
Focusing on the binary polymer mixture films under the off-critical condition, the phase dynamics and wetting layer formation mechanisms of pattern-directed phase separation are numerically investigated. The simulated results demonstrate that, for different compositions, the polymer mixtures on the strip patterned surface can exhibit various phase morphologies in the strips of the bulk, which can be used to tailor the microscopic structures of films. The evolutions of these phase structures in the strips of the bulk obey almost the same power law with an exponent of 1/3, i.e., the Lifshitz-Slyozov growth law for the films with various off-critical degrees. It is found that the wetting layer thickness near the patterned surface grows logarithmically at the initial stages, just like the wetting layer formation mechanism of the polymer mixture near the surface with an isotropic potential. This revels that only patterning the surface potential may not change the growth law of the wetting layer. The simulated results also indicate that the diffusion of the component in the direction parallel to the surface originates from the edge of the strips.  相似文献   

18.
A novel porous epoxy acrylate resin monolith has been successfully prepared by low-temperature phase separation photoinitiated polymerization. The process parameters of low-temperature photopolymerization, including photoinitiators type, concentration, and sample thickness were studied. The optimum conditions for the preparation of the sample were also evaluated. The results showed that the porous morphology of the prepared monolith was affected by monomer concentration, freezing speed and temperature of the solution. The average pore size increased with increasing solvent amount, decreasing freezing temperature and speed.  相似文献   

19.
Phase separation behavior and morphology of polymer blends induced by photopolymerization have been investigated in a binary blend of photocurable polymer (2,2-bis(4-(acryloxy diethoxy)phenyl)propane; BPE4) and linear polymer (polysulfone; PSU) using electron microscopy techniques. A ternary phase diagram of mono-BPE4/poly-BPE4/PSU exhibits a lower critical solution temperature (LCST) behavior. In situ polymerization of BPE4 over a wide range of PSU compositions (5-70 wt%) results in network-like bicontinuous phase separated structures at high temperatures, while semi-interpenetrating polymer network (IPN) structures are cured at low temperatures. Even at 10 wt% PSU, the PSU-rich phase is a continuous network-like phase. BPE4-rich domains in the network-like structures are controlled from the nano-scale (30 nm) to the microscale (1 μm) by varying the composition, curing temperature and irradiation intensity. By means of time-evolution study of the phase structure, it is found that BPE4-rich domains appeared in a PSU-rich matrix after the induction time. These domains quickly grow in size up to the sub-micron level, but further growth appears to be slow. The PSU-rich matrix develops into the network-like pattern by the increase in the number and growth of the BPE4-rich domains.  相似文献   

20.
Asymmetric gas separation membranes were prepared by the dry-casting technique from PEEKWC, a modified amorphous glassy poly(ether ether ketone). The phase inversion process and membrane performance were correlated to the properties of the polymer and the casting solution (molar mass, polymer concentration, solution rheology and thermodynamics). It was found that a broad molar mass distribution of the polymer in the casting solution is most favourable for the formation of a highly selective membrane with a dense skin and a porous sub-layer. Thus, membranes with an effective skin thickness of less than 1 μm were obtained, exhibiting a maximum O2/N2 selectivity of 7.2 and a CO2/CH4 selectivity of 39, both significantly higher than in a corresponding thick dense PEEKWC membrane and also comparable to or higher than that of the most commonly used polymers for gas separation membranes. The CO2 and O2 permeance were up to 9.5×10−3 and 1.8×10−3 m3/(m2 h bar) (3.5 and 0.67 GPU), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号