首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Amine functionalized multiwalled carbon nanotubes (a‐MWNT) based polypropylene (PP) composite fibers were prepared in the presence of polypropylene‐g‐maleic anhydride (PP‐g‐MA) by melt‐mixing followed by melt‐spinning with subsequent post‐drawing of the as‐spun fibers of varying draw ratio (DR). In order to enhance the interfacial interaction, a‐MWNT were utilized in combination with PP‐g‐MA during melt‐mixing. Fourier transform infrared spectroscopic analysis revealed the formation of imide bonds between MA functionality of PP‐g‐MA and amine functional group of a‐MWNT. Higher tensile properties of PP/a‐MWNT/PP‐g‐MA composite fibers were registered with varying DR of the as‐spun fiber. Orientation factors of a‐MWNT and PP chains along the fiber axis were correlated with the higher tensile modulus and tensile strength of PP/a‐MWNT/PP‐g‐MA composite fiber of varying DR. Crystallization studies indicated the role of hetero‐nucleating action of a‐MWNT in PP/a‐MWNT/PP‐g‐MA composite fiber. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

2.
T.D. Fornes  J.W. Baur  E.L. Thomas 《Polymer》2006,47(5):1704-1714
Polycarbonate fibers based single wall and multi-wall nanotubes (SWNT and MWNT) were prepared by first dispersing the nanotubes via solvent blending and/or melt extrusion followed by melt spinning the composites to facilitate nanotube alignment along the fiber axis. Morphological studies involving polarized Raman spectroscopy and wide angle X-ray scattering using a synchrotron radiation source show that reasonable levels of nanotube alignment are achievable. Detailed transmission electron microscopy (TEM) investigations on the polymer-extracted composite fibers reveal that MWNT more readily disperse within the PC matrix and have higher aspect ratios than do SWNT; extraction of the polymer from the composite prior to TEM imaging helps overcome the common issue of poor atomic contrast between the CNT and the organic matrix. Stress-strain analysis on the composites fibers show that MWNT, in general, provide greater stiffness and strength than those based on SWNT. Despite significant reinforcement of the polycarbonate, the level of reinforcement is far below what could be achieved if the nanotubes were completely dispersed and aligned along the fiber axis as predicted by composite theory.  相似文献   

3.
The effects of melt spinning and cold drawing on structure development and resulting properties of poly (aryl ether ketone) (PAEK) have been investigated. Melt spun and subsequently cold drawn fibers were characterized by differential scanning calorimetry, wide angle X-ray diffraction, small angle X-ray diffraction, and birefringence techniques. At low take-up speeds, essentially amorphous fibers are produced. High take-up speeds result in development of crystallinity in the as-spun fibers. Cold drawing above the, Tg of PAEK causes further increase of crystallinity. Wide angle X-ray patterns indicate progressive alignment of chains along the fiber axis in as spun as well as in cold-drawn fibers with the draw down ratio and cold draw ratio. However, cold drawing was observed to broaden the WAXS peaks. SAXS patterns of cold drawn and fixed annealed fibers changed from two-point to four-point patterns indicating mosaic pattern formation of crystalline and amorphous regions. Mechanical properties including tensile strength, elongation at break, modulus, and yield strength were measured and correlated with fiber structure. Fracture surfaces of tensile tested fibers were observed using scanning electron microscopy and correlated with developed fiber structure.  相似文献   

4.
We investigated the crystallization and orientation development in melt spinning and tubular blown film extrusion of several different types of polypropylenes, including conventional high tacticity isotactic polypropylenes (iPP) and metallocene catalyst low tacticity iPPs and syndiotactic polypropylenes (sPP). The fiber and film samples were characterized by wide‐angle X‐ray diffraction (WAXD), birefringence and differential scanning calorimetry (DSC). In melt spinning iPP, we found that the mesomorphic structure of iPP is more readily formed in lower tacticity fibers, and significant amounts of hexagonal β‐form crystals are found in low tacticity iPP fibers spun at high draw‐down ratios. Low tacticity iPP fibers exhibited a significant decrease in the crystalline chain‐axis orientation at high draw‐down ratios, resulting from increased epitaxially branched lamellae. Melt‐spun sPP fibers exhibit Form I helical structure at low spinning speeds and Form III zigzag all trans structure at high spinning speeds. We found that the level of spinline stress is the governing factor for this structural change. Melt‐spun sPP fibers exhibit much higher chain‐axis (c‐axis) orientation factors (fc) and lower birefringence than iPP fibers spun at the same spinline stresses. In tubular blown sPP films, the a‐axis of Form I unit cell tends to orient perpendicular to the film surface, while the b‐axis of monoclinic α unit cell does so in iPP blown films.  相似文献   

5.
Poly(trimethylene terephthalate) has been melt spun at various take-up velocities from 0.5 to 8 km/min to prepare fiber samples. The effect of take-up velocity on the structure and properties of as-spun fibers has been characterized through measurements of birefringence, density, wide-angle X-ray scattering, DSC melting behavior, tensile properties and boiling water shrinkage (BWS). The birefringence exhibits a maximum at take-up velocities between 3 and 4 km/min. The fiber samples spun at the lower take-up speeds have essentially amorphous structures, while the filaments prepared at a velocity range higher than 4 km/min all possess an obvious crystalline structure. With increasing take-up speed, a steady improvement in tensile strength, elongation to break, and BWS is found, whereas the initial modulus remains almost constant within the measurement error, over the entire take-up speed range between 0.5 and 8 km/min.  相似文献   

6.
In this work, polyamide 66 (PA66) and its composites with multiwalled carbon nanotubes (MWNTs) were melt spun into fibers at different draw ratios. PA66 fibers at high draw ratio demonstrate a 40% increase in tensile strength, 66% increase in modulus and a considerable increase in toughness. It is demonstrated that this reinforcement can be mainly attributed to high‐draw‐ratio‐induced good dispersion and orientation of MWNTs, particularly the enhanced interfacial adhesion between MWNT and matrix thanks to interfacial crystallization. Our work provides a simple but efficient method to achieve good dispersion and strong interfacial interaction through melt spinning. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
The inclusion of nanoparticles in polymer fibers is potentially useful for improving or bringing new properties such as mechanical strength, electrical conductivity, piezoresistivity, and flame retardancy. In this study, composite fibers made of polyamide 12 and multiwall carbon nanotubes were investigated. The fibers were spun via a melt‐spinning process and stretched at different draw ratios. The influence of several spinning factors, including spinning speed, extrusion rate, and draw ratio were investigated and correlated to the structure and properties of the fibers. X‐ray diffraction analyses and mechanical tests indicated that the spinning speed barely affected the structure and mechanical properties of the fibers under tension. The spinning speed, however, is critical for future industrial applications because it determines the possible production rates. By contrast, drawing during spinning or after spinning strongly affected the polymer chain alignment and fiber mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
将多壁碳纳米管(MWNT)氧化后,酰氯化处理,在氨基封端的PA6聚合时加入,制备PA6/MWNT母粒,将母粒同PA6切片熔融共混纺丝,制备PA6/MWNT纤维。用INSTRON 1122型万能材料试验机测定纤维的力学性能。结果表明,改性MWNT的加入提高了PA6纤维的断裂强度,纤维中MWNT质量分数仅为0.05%时,纤维的断裂强度和初始模量最大,分别增加了60%和86%。用扫描电镜观察复合纤维的结构,发现MWNT均匀地分布在PA6中,并与PA6基体间有相互作用,沿纤维轴向取向。  相似文献   

9.
Shilun Ruan  T.X. Yu 《Polymer》2006,47(5):1604-1611
This paper reports the use of multiwalled carbon nanotubes (MWCNT) to reinforce and toughen gel-spun ultra high molecular weight polyethylene (UHMWPE) fibers. By adding 5 wt% MWCNT, ultra strong fibers with tensile strengths of 4.2 GPa and strain at break of ∼5% can be produced. In comparison with the pure UHMWPE fiber at the same draw ratios, these values represent increases of 18.8% in tensile strength and 15.4% in ductility. In addition, a 44.2% increase in energy to fracture has also been observed. The mechanism of reinforcement has been studied using a combination of high resolution scanning electron microscopy (SEM) and micro-Raman spectroscopy. Carbon nanotube alignment along the tensile draw direction has been observed at high elongation ratios. Such alignment induces strong interfacial load transfer both at small and large strains to enhance the stiffness and tensile strength of the composite fiber. Consequently, the mechanical properties of the composite fiber follow closely with the rule of mixtures. Our work also reveals potential for positive deviation from rule of mixtures if the CNT alignment can be further optimized.  相似文献   

10.
An experimental study of the spinnability and the variation in crystallinity and orientation in high-density and low-density polyethylene fibers with melt spinning and drawing conditions has been carried out. Three polymers (two high-density and one low-density) and eicosane (C20H42) were studied. The maximum spinnability was in the lower molecular weight high-density polyethylene. Hermans-Stein a, b, and c crystallographic axis orientation factors were computed from wide-angle x-ray scattering patterns. In the spun fiber, small take-up velocities cause the b axis to become perpendicular to the fiber axis in each fiber. The c axis increasingly orients itself parallel to the fiber axis as take-up velocity increases. The a axis orientation is different for each polymer. The results are interpreted in terms of modern theories of crystalline morphology, specifically the development of row structures. In the drawing experiments, the two high-density polyethylenes necked. A phenomenological theory of necking is discussed. The a, b, and c axis orientation factors were determined for different stages of drawing. In the necked regions and in completely drawn fibers, the c axis was parallel to the fiber axis and the a and b axes are perpendicular to the fiber axis. The tangent Young's modulus and tensile strength of the spun fibers increased with take-up velocity and in the drawn fibers were an order of magnitude higher than in the spun fiber. The mechanical properties of spun fiber may be correlated with the c axis (Hermans) orientation factor. The drawn fiber shows significant variations in Young's modulus and tensile strength at constant unit cell orientation.  相似文献   

11.
Fibers from polypropylene and polypropylene/vapor grown nano carbon fiber composite have been spun using conventional melt spinning equipment. At 5 wt% nano carbon fiber loading, modulus and compressive strength of polypropylene increased by 50 and 100%, respectively, and the nano carbon fibers exhibited good dispersion in the polypropylene matrix as observed by scanning electron microscopy.  相似文献   

12.
Han Gi Chae  Satish Kumar 《Polymer》2006,47(10):3494-3504
Polyacrylonitrile (PAN)/single wall carbon nanotubes (SWNT) fibers were gel spun at 0, 0.5, and 1 wt% SWNT content to a draw ratio of 51. Structure, morphology, and mechanical and dynamic mechanical properties of these fibers have been studied. PAN/SWNT composite exhibited much higher electron beam radiation resistance than PAN. As a result, PAN lattice images could be easily observed in the composite fiber by high resolution transmission electron microscopy. The PAN/SWNT composite fiber also exhibited higher solvent resistance than the control PAN fiber. UV-vis spectroscopy of highly drawn fiber exhibited van Hove transitions, suggesting SWNT exfoliation upon drawing. SWNT exfoliation was also confirmed by high resolution transmission electron microscopy (HRTEM). At 1 wt% SWNT loading, fiber storage modulus (at 1 Hz) increased by 13.9, 6.6, and 0.2 GPa at −75, 25, and 150 °C, respectively. This suggests that the load transfer ability and hence interfacial strength is increasing with decreasing temperature, even below the polymer's γ transition temperature.  相似文献   

13.
Polyethylene terephthalate (PET) melt‐spun fibers were modified with multiwall carbon nanotubes (MWCNT) to obtain conductive microfibers smaller than 90 μm in diameter. Physical properties such as crystallinity and orientation of as‐spun fibers were studied by X‐ray diffraction, Raman spectroscopy, and microscopy techniques at different draw ratios (DR) and MWCNT concentrations. Morphological and orientation analysis of MWCNT after melt‐spinning process showed agglomerates formation and highly oriented CNTs. The study of the orientation of PET crystalline phase in drawn fibers proved that the addition of nanoparticles decreases the orientation of crystalline units inside the fibers. The orientation of MWCNT as well as that of PET chains was studied using Raman spectroscopy at different DR and a high degree of CNT orientation was observed under high DR conditions. Mechanical and electrical properties of as‐spun fibers were also investigated. Our results showed that it was possible to achieve conductive fibers at a MWCNT concentration of 2% w/w, and more conductive fibers using higher DR were also obtained without increasing the MWCNT concentration. Mechanical properties results showed interestingly high value of maximum tensile strain at break (εmax) of nanocomposite fibers, up to three times more than pure PET fibers. POLYM. ENG. SCI., 50:1956–1968, 2010. © 2010 Society of Plastics Engineers  相似文献   

14.
Here, we report the successful preparation of PA6/GO composite fibers through in situ polymerization and the melting spinning method. The results suggest that graphene has induced only minor changes on the relative viscosity yet exhibits significant effects on the crystallization characteristics. The SEM images of the fibers have shown several expended borders as a consequence of graphene addition. The maximum strength of the composite fibers (5.3 cN/dtex) has been reached 0.05 wt % graphene added to the system; the draw ratio was equaled to 3.8. Compared to the neat PA6 fiber, the fibers with graphene displayed superior creep resistance features; the creep rate constant was 0.38 at a 0.05 graphene concentration, with a draw ratio of 3.5. The approach employed in this research paves the way towards PA6/graphene nanocomposites have been prepared through in situ polymerization using caprolactam and graphene oxide/water pulp as starting materials. In situ polymerization approach facilitated a superior interaction between PA6 and graphene. Compared to graphene oxide powder, the graphene oxide in water pulp has prevented the agglomeration when added to the caprolactam melt, leading to its enhanced dispersion within the system. PA6/graphene as‐spun fiber has been produced by the mean of melt‐spinning strategy using a melt‐spinning machine, obtaining products with different draw ratios after drawing at 120 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45834.  相似文献   

15.
A novel photocrosslinkable and melt processible terpolymer precursor for carbon fiber has been successfully synthesized and characterized. The terpolymer was synthesized by an efficient emulsion polymerization route and has a typical composition of acrylonitrile/methyl acrylate/acryloyl benzophenone in the mole ratio, 85/14/1. It has been characterized by FTIR, NMR, intrinsic viscosity and GPC molecular weights. The composition of the monomer repeat units in the terpolymer was determined by NMR, and was almost identical to the molar feed ratios of the monomers used for polymerization. The Tg of the terpolymers, were somewhat a function of molecular weight, but were in the range 77-91 °C. The fibers were spun from the terpolymer melts unlike the conventional solution spinning method. The terpolymers when stabilized with boric acid afforded a stable melt for about 30 min at 200-220 °C, which was empirically found to be sufficiently long to spin fibers. The terpolymer with the highest molecular weight (Mn, ∼48,000) was not melt processible, apparently because the melt viscosity was very high and the terpolymer degraded fast. However, terpolymers, which had an intrinsic viscosity <0.6 dL/g (NMP, 25 °C) were invariably melt processible. The initial carbon fibers produced from these terpolymer fibers upon complete carbonization exhibited good mechanical properties for proposed automotive applications; the tensile strength of the best fibers generated thus far was in the range 450-700 MPa with a strain to failure of ∼0.4%. The diameter of the carbon fibers was of the order of 7 μm.  相似文献   

16.
Complex permittivity and related AC conductivity measurements in the frequency range between 10−4 and 107 Hz are presented for composites of polycarbonate (PC) filled with different amounts of multiwalled carbon nanotubes (MWNT) varying in the range between 0.5 and 5 wt%. The composites were obtained by diluting a PC based masterbatch containing 15 wt% MWNT by melt mixing using a Micro Compounder. From DC conductivity measurements it was found that for samples processed at a mixing screw speed of 150 rpm for 5 min, the percolation occurs at a threshold concentration (pc) between 1.0 and 1.5 wt% MWNT. For concentrations of MWNT near the percolation threshold, the processing conditions (screw speed and mixing time) were varied. The differences in the dispersion of the MWNT in the PC matrix could be detected in the complex permittivity and AC conductivity spectra, and have been explained by changes in pc. The AC conductivity and permittivity spectra are discussed in terms of charge carrier diffusion on percolation clusters and resistor-capacitor composites.  相似文献   

17.
Lyocell fiber is a new kind of regenerated cellulose fiber and expected to replace the Rayon fiber to be not only used in the textile field but also used in the fields of industry and aerospace after being modified. In this work, the multi‐walled carbon nanotubes (MWNTs)/Lyocell composite fibers were prepared under different draw ratios by dry‐wet spinning and their electrical properties, mechanical properties, and structure were investigated. It was found that an appropriate amount of MWNTs could be dispersed homogeneously in the Lyocell matrix and could improve the mechanical and thermal properties of composite fiber. The results of wide angle X‐ray diffraction (WAXD) showed that the MWNTs in the composite fiber almost aligned along the axis of the fibers and the orientation of MWNTs increased with the increasing draw ratio. Furthermore, it was found that more MWNTs content and lower draw ratio could improve the electrical conductance of the composite fiber. The composite fiber containing 5 wt % MWNTs has a volume conductivity of 8.8 × 10?4 S/cm, which is five orders higher than that of pure Lyocell fiber. These results indicate that the MWNTs/Lyocell composite fiber has potential applications in the areas of precursor of carbon fiber and conductive fiber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Keyur Desai 《Polymer》2008,49(19):4046-4050
We report the formation of non-woven fibers without bead defects by electrospinning blend solutions of chitosan and polyacrylamide (PAAm) with blend ratios varying from 75 wt% to 90 wt% chitosan using a modified electrospinning unit wherein polymer solutions can be spun at temperatures greater than ambient up to 100 °C. Electrospinning at elevated temperature leads to further expansion of the processing window, by producing fibers with fewer defects at higher chitosan weight percentage in the blends. Effects of varying blend ratios, spinning temperatures, and molecular weights on fiber formation were studied and optimum conditions for formation of uniform non-woven fiber mats with potential applications for air and water filtration were obtained. Uniform bead-less fiber mats with fiber diameter as low as 307 ± 67 nm were formed by spinning 90% chitosan in blend solutions at 70 °C.  相似文献   

19.
We report on the process–structure–property relationships for Poly(lactic acid) (PLA) filaments produced through the spunbond process. The influence of spinning speed, polymer throughput, and draw ratio on crystallinity and birefringence of fibers were evaluated. We established that increasing spinning speed increases crystallinity and birefringence of fibers. We also investigate the role of fiber structures on fiber tensile properties—breaking tensile strength, strain at break, initial modulus, and natural draw ratio. An increase in spinning speed leads to a higher breaking tensile strength, higher initial modulus and lower strain at break. We have shown an almost linear relationship between breaking tensile strength of PLA fibers and birefringence. This indicates that improved tensile properties at high spinning speeds can be attributed to enhanced molecular orientation. The dependency of fiber breaking tensile strength and strain at break on spun orientation were explained with natural draw ratio, as a measure of spun orientation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44225.  相似文献   

20.
Melt spinning of conductive polymer composites (CPCs) is coupled with some difficulties such as a decrease of conductivity upon drawing and a reduced spinnability with increasing filler concentration. Applying bicomponent technology may provide the possibility to produce fibers from CPCs with a high filler concentration. A pilot‐scale bicomponent melt spinning set‐up was used to produce core/sheath fibers with fiber titers between 13 and 47 dtex. The sheath material was polyamide 6 (PA6) or polypropylene (PP) and the core material was a CPC. Two CPCs were used, polypropylene (PP) with carbon black (CB), denoted by PP/CB, and polyethylene (PE) with multiwalled carbon nanotubes (MWNT), denoted by PE/MWNT. The results showed that both materials could be used with a filler concentration of 10 wt % to obtain melt draw ratios up to 195. The volumetric fraction of core material in the bicomponent structure was 28%. A heat treatment of PP/CB fibers restored the conductivity to the level of the undrawn material, corresponding to an increase in conductivity by a factor 5. The same heat treatment had a positive effect on the conductivity of PE/MWNT fibers although the conductivity was not restored. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号