首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sulfation model was developed for dry flue gas desulfurization (FGD) at moderate temperatures to describe the reaction characteristics of the T-T sorbent clusters and the fine CaO particles that fall off the sorbent grains in a circulating fluidized bed (CFB) reactor. The cluster model describes the calcium conversion and reaction rate for various size sorbent clusters. The sulfation reaction is first order with respect to the SO2 concentration above 973 K. The calcium conversion and reaction rate for the CaO particles were obtained by extrapolation. In the model for CaO particle, the reaction rate is linearly related to the calcium conversion and the SO2 concentration in the rapid reaction stage and linearly related only with the calcium conversion after the product layer forms. The sulfation model accurately describes the sulfation of the T-T sorbent flowing through a CFB reactor. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

2.
王德武  卢春喜  严超宇 《化工学报》2010,61(9):2235-2242
针对催化汽油辅助反应器改质降烯烃技术,在一套提升管与气-固环流床层耦合反应器大型冷模实验装置上,研究了上部环流床层的流体力学特性。结果表明,在环流床层与提升管耦合操作的情况下,床层内颗粒环流存在两种推动力,分别为静压差推动力和颗粒喷射推动力;环隙与导流筒之间的整体平均固含率差随导流筒表观气速增加而增加,随颗粒外循环强度增加而降低;颗粒环流速度随导流筒表观气速和颗粒外循环强度增加而增加。通过对环流床层进行动量衡算,建立了提升管与环流床层耦合流动的数学模型,模型平均相对误差在15.95%以内。  相似文献   

3.
A moderate temperature dry circulating fluidized bed flue gas desulfurization (CFB-FGD) process was developed using rapidly hydrated sorbent. This technique has the advantages of low cost, no water consumption, and a valuable dry product CaSO4. To keep the system operation stable, a mass balance model, based on cell model considering flow state, particle abrasion, particle residence time, particle segregation and desulfurization processes, was built to predict the system state and optimize the operating condition. Experimental studies were conducted on a pilot-scale CFB-FGD system with rapidly hydrated sorbent made from CFB circulating ash and lime (circulating ash sorbent) or coal fly ash and lime (coal fly ash sorbent). Calculated results were compared with experimental results and the relative error was less than 10%. The results indicated that feed sorbent mass, feed sorbent size, superficial gas velocity, particle abrasion coefficient and cyclone efficiency had significant influence on the mass balance of CFB system. The circulating ash sorbent was better than the coal fly ash sorbent, for providing higher desulfurization efficiency and being better for the CFB-FGD system to achieve mass balance.  相似文献   

4.
To demonstrate process feasibility of in situ CO2 capture from combustion of fossil fuels using Ca-based sorbent looping technology, a flexible atmospheric dual fluidized bed combustion system has been constructed. Both reactors have an ID of 100 mm and can be operated at up to 1000 °C at atmospheric pressure. This paper presents preliminary results for a variety of operating conditions, including sorbent looping rate, flue gas stream volume, CaO/CO2 ratio and combustion mode for supplying heat to the sorbent regenerator, including oxy-fuel combustion of biomass and coal with flue gas recirculation to achieve high-concentration CO2 in the off-gas. It is the authors' belief that this study is the first demonstration of this technology using a pilot-scale dual fluidized bed system, with continuous sorbent looping for in situ CO2 capture, albeit at atmospheric pressure. A multi-cycle test was conducted and a high CO2 capture efficiency (> 90%) was achieved for the first several cycles, which decreased to a still acceptable level (> 75%) even after more than 25 cycles. The cyclic sorbent was sampled on-line and showed general agreement with the features observed using a lab-scale thermogravimetric analysis (TGA) apparatus. CO2 capture efficiency decreased with increasing number of sorbent looping cycles as expected, and sorbent attrition was found to be another significant factor to be limiting sorbent performance.  相似文献   

5.
The effects of gas velocities to draft tube (26.64–52.54 cm/s) and to annulus section (8.14–11.84 cm/s) on solid circulation rate and gas bypassing fractions were determined in a square internally circulating fluidized bed reactor with an orifice-type square draft tube. The solid circulation rate and gas bypassing fraction from the annulus section to the draft tube increase but gas bypassing fraction from the draft tube to the annulus section decreases with increasing gas velocity to the draft tube. With increasing gas velocity to the annulus section, the solid circulation rate and gas bypassing fraction from the draft tube to the annulus section increase but, gas bypassing fraction from the annulus section to the draft tube decreases. The solids circulation rate was correlated with the pressure drop across the orifice and the opening area ratio based on the orifice theory. The gas bypassing fraction was correlated with gas velocities to the fluidized and the moving beds. Based on the gas bypassing fraction data, the gas flow rates across the orifice were correlated with gas velocities to the fluidized and the moving beds, opening area ratio, particle size and solids height in the bed.  相似文献   

6.
Hydrodynamics in airlift loop section of petroleum coke combustor   总被引:2,自引:0,他引:2  
Based on the combustion characteristics of petroleum coke, a coupled gas-solid fluidized bed combustor is proposed in this work. The overall circulating system of the fluidized bed mainly consists of a dense-phase airlift loop section and a dilute-phase riser section. In different operating conditions, the particle flow behaviors in the airlift loop section were investigated systematically by using optical fiber probe. The experimental results show that the airlift loop section can be divided into four regions, namely, the draft tube, the annulus, the bottom region and the particle diffluence region, in which the average cross-sectional solids fraction and the particle velocity are different. The overall solids fraction difference between the draft tube and the annulus provides a driving force for particle circulation flow in the airlift loop section, and the driving force increases with increasing the superficial gas velocity in the draft tube. The ratio of the particle mass flux in the annulus to that in the riser ranges from 8 to 16. The particle circular velocity in the annulus also increases with increasing the superficial gas velocity in the draft tube. Moreover, a model about the particle circular velocity is established on the basis of energy equilibrium principle.  相似文献   

7.
针对开发适用于化学气相沉积反应动力学研究的微型流化床反应分析仪的应用需求,研究了外径为30 mm的内循环微型流化床中气固流动特性,具体考察了中心射流管伸入高度、内导流管直径和颗粒装载量对实现固体物料内循环的最小操作气速和导流管与环隙区间窜气的影响。结果表明,随着射流管伸入高度的增大,实现颗粒内循环流动的最小操作气速变大;存在最优的导流管直径(20 mm),使得实现颗粒环流的最小操作气速较小;增大颗粒装载量有利于降低颗粒内循环的最小操作气速。通过检测示踪气体在环隙区内的质谱信号,发现在所考察的参数范围内,反应器底部不存在导流管区向环隙区的窜气;在反应器上部,由于颗粒对气体的夹带,环隙区上部总能检测到示踪气体,且窜气特性随操作气速的增大而增强。研究结果可为设计适用于化学气相沉积反应的内循环微型流化床反应器提供参考。  相似文献   

8.
The effects of superficial gas velocity (Ug), wavelength and intensity of ultraviolet (UV) light, oxygen and H2O concentration on the photocatalytic degradation of TCE (Trichloroethylene) over TiO2/SiO2 catalyst have been determined in an annulus fluidized bed photoreactor. The key factor in determining the performance of the annulus fluidized bed photoreactor is found to be an optimum superficial gas velocity (Ug) that provides the optimum UV lighttransmit through the proper size of bubbles in the photoreactor. The degradation efficiency of TCE increases with light intensity but decreases with wavelength of the UV light and H2O concentration in the fluidized bed of TiO2/silica-gel photocatalyst. The optimum concentration of O2 for TCE degradation is found to be approximately 10%. The annulus fluidized bed photoreactor is an effective tool for high TCE degradation with efficient utilization of photon energy. This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement from Korea University.  相似文献   

9.
Sulphur dioxide removal using South African limestone/siliceous materials   总被引:1,自引:0,他引:1  
D.O. Ogenga  K.T. Lee  I. Dahlan 《Fuel》2010,89(9):2549-2038
This study presents an investigation into the desulfurization effect of sorbent derived from South African calcined limestone conditioned with fly ash. The main aim was to examine the effect of chemical composition and structural properties of the sorbent with regard to SO2 removal in dry-type flue gas desulfurization (FGD) process. South African fly ash and CaO obtained from calcination of limestone in a laboratory kiln at a temperature of 900 °C were used to synthesize CaO/ash sorbent by atmospheric hydration process. The sorbent was prepared under different hydration conditions: CaO/fly ash weight ratio, hydration temperature (55-75 °C) and hydration period (4-10 h). Desulfurization experiments were done in the fixed bed reactor at 87 °C and relative humidity of 50%. The chemical composition of both the fly ash and calcined limestone had relatively high Fe2O3 and oxides of other transitional elements which provided catalytic ability during the sorbent sorption process. Generally the sorbents had higher SO2 absorption capacity in terms of mol of SO2 per mol of sorbent (0.1403-0.3336) compared to hydrated lime alone (maximum 0.1823). The sorbents were also found to consist of mesoporous structure with larger pore volume and BET specific surface area than both CaO and fly ash. X-ray diffraction (XRD) analysis showed the presence of complex compounds containing calcium silicate hydrate in the sorbents.  相似文献   

10.
The effects of orifice diameter in the draft tube, particle size, gas velocities and bed height on the circulation rate of solids and gas bypassing between the draft tube and annulus have been determined in an internally circulating fluidized bed (i.d., 0.3 m ; height, 2.5 m) with an orifice-type draft tube. A conical shape gas separator has been employed above the draft tube to facilitate the separation of gases from the two beds. The circulation rate of solids and the quantity of gas bypass from the annulus to draft tube show their minimums when the static bed height is around the bottom of the separator. The circulation rate of solids increases with an increase in orifice diameter in the draft tube. At fixed aeration to the annulus, gas bypassing from the draft tube to annulus sections decreases, whereas reverse gas bypassing from the annulus to the draft tube increases with increasing the inlet gas velocity to the draft tube. The obtained solids circulation rate has been correlated by a relationship developed for the cocurrent flow of gas and solid through the orifice.  相似文献   

11.
Effects of superficial gas velocities to a draft tube, to an annulus section and particle size on the solid circulation rate (G,) have been determined in an internally circulating fluidized bed (0.28 m I.D. × 2m high) with an orifice type draft tube. The solid circulation rate from the draft tube to an annulus section increases with increasing gas velocities to the draft tube(U d ) and annulus section (Ua) and consequent increase in pressure drop across the orifice (ΔPor). However, the values ofG s decrease by 7–21% with increasing particle size from 86 to 288 μm. The pressure drop across the orifice increases with increasingU d andU a . However, ΔPor decreases by 5–23% with increasing particle size. To predictG s in an internally circulating fluidized bed, a correlation is proposed as a function of ΔPor This paper is dedicated to Professor Dong Sup Doh on the occasion of his retirement Korea University.  相似文献   

12.
There is increasing interest in CO2 looping cycles that involve the repeated calcination and carbonation of the sorbent as a way to capture CO2 from flue gases during the carbonation step and the generation of a pure stream of CO2 in the oxyfired calcination step. In particular, attrition of the material in these interconnected fluidized bed reactors is a problem of general concern. Attrition of limestone derived materials has been studied in fluidized bed systems by numerous authors. In this work, we have investigated the attrition of two limestones used in a system of two interconnected circulating fluidized bed reactors operating in continuous mode as carbonation and calciner reactors. We observed a rapid initial attrition of both limestones during the calcination step which was then followed by a highly stable period (up to 140 h of added circulation for one of the limestones) during which particle size changes were negligible. This is consistent with previous observations of attrition in other systems that employ these materials. However, a comparison of the attrition model constants with the data reported in the literature showed the two limestones to be particularly fragile during the initial calcination and the first few hours of circulation. Thus, a careful choice of limestone based on its attrition properties must be taken into account in designing future carbonate looping systems.  相似文献   

13.
循环流化床脱硫反应器Ca/S比选择的影响因素   总被引:1,自引:0,他引:1  
Ca S比是循环流化床脱硫反应器脱除SO2时的一个重要的操作参数,选择Ca S比时受到脱硫反应机理、烟气停留时间、脱硫产物循环比及烟气气体组成等多种因素的影响,本文分析讨论了这些因素对选择Ca S的影响,提出了适宜的操作条件,以期为工业应用提供参考。  相似文献   

14.
A novel sorbent, potassium carbonate impregnated on porous fine alumina, was produced, and its reactive and regenerative properties were evaluated for dry‐type simultaneous removal of SO2 and NO from flue gas under stack temperatures, by using a powder‐particle fluidized bed (PPFB) with I.D. of 53 mm as the reactor. High removal efficiencies for SO2 and NO were achieved simultaneously. An apparent beneficial effect of SO2 on the enhancement of NO removal was found based on a large amount of data. The alumina carrier was successfully regenerated and used repeatedly for the production of fresh sorbent particles. With no ammonia, low temperature, high removal efficiency, and no second waste emission as main characteristics, this dry process can be a competitive technology for pollution control of flue gas from power plants in the future.  相似文献   

15.
A spouted bed of binary particle mixture was applied to a low temperature desulfurization process in order to develop a new type of semidry flue gas desulfurization (FGD) technology. We investigated the effects of operating parameters, such as type of SO2 sorbent, diameter of SO2 sorbent particles, apparent residence time of gas in the bed, approach to saturation temperature and Ca/S molar ratio, on SO2 removal in a bench-scale powder-particle spouted bed. We also investigated the utilization rate of SO2 sorbent and ways to enhance the efficiency of SO2 removal and SO2 sorbent utilization. The experimental results showed that SO2 removal is significantly affected by the approach to saturation temperature and Ca/S molar ratio, and that a high SO2 removal efficiency and effective sorbent utilization can be obtained under appropriate operating conditions. Thus, this new simple process of flue gas desulfurization is highly efficient and has little impact on the environment.  相似文献   

16.
《分离科学与技术》2012,47(11):1788-1796
A model approach is presented here to obtain sorption isotherms that are connected with a low cost breakthrough analysis for dry desulphurization of flue gas in a fluidized bed reactor. Experiments were conducted at different temperatures (600–900°C) providing constant feedstock concentration (0.6% SO2). The fluidizing gas entered the bed through a distributor and fluidized the single charge of 15 g sorbent. The space velocity ranged from 3100 to 5700 h?1. Each run was terminated when the steady state was reached. Sulfate layer thickness was calculated from conversion ratio and the structural parameter. Inserting this value and the particle size parameter into the mass transfer equation then extracted the process parameters. Equilibrium relationships involving these parameters were compared with different isotherms. The agreement between the experimental and predicted values of the sorption isotherms validated the model. The latter may be successfully used to design reactors for e.g., sulfating or desulphurization.  相似文献   

17.
In recent years several processes incorporating a carbonation-calcination loop in an interconnected fluidized bed reactor have been proposed as a way to capture CO2 from flue gases. This paper is a first approximation to the modelling of a fluidized bed carbonator reactor. In this reactor the flue gas comes into contact with an active bed composed of particles with very different activities, depending on their residence time in the bed and in the carbonation-calcination loop. The model combines the residence time distribution functions with existing knowledge about sorbent deactivation rates and sorbent reactivity. The fluid dynamics of the solids (CSTR) and gases (PF) in the carbonator are based on simple assumptions. The carbonation rates are modelled defining a characteristic time for the transition between a fast reaction regime to a regime with a zero reaction rate. On the basis of these assumptions the model is able to predict the CO2 capture efficiency for the flue gas depending on the operating and design conditions. Operating windows with high capture efficiencies are discussed, as well as those conditions where only modest capture efficiencies are possible.  相似文献   

18.
环隙气升式气固环流反应器内流体力学特性的理论分析   总被引:1,自引:5,他引:1  
环流反应器的研究与应用一直局限于气液与气液固体系,将环流反应器移植到气固体系是一个具有独创性的探索。针对工业化中气固环流反应器的缺陷,提出了一种新型的环隙气升式气固环流反应器。并对床层空隙率、颗粒流动速度进行了实验研究与理论分析。建立了环隙区床层空隙率模型,发现环隙区床层空隙率随着环隙区表观气速的增加而增加;环隙区靠近导流筒外壁一侧颗粒流动速度明显大于靠近反应器内壁一侧,导流筒区颗粒流动速度沿径向的分布受气体分布器结构影响较大;环隙区颗粒流动速度基本不随轴向位置的变化而变化,导流筒区颗粒的流动属于密相输送,颗粒环流所受到的阻力主要集中在底部区域,其次为气固分离区,底部区域阻力大小由床层流化质量和导流筒下端距反应器底部的间隙所决定;建立了颗粒环流速度模型,发现环流速度随环隙区表观气速的增加而增加。  相似文献   

19.
The effects of gas velocity to draft tube (3–6 Um), bed temperature (800–900°C) and excess air ratio (0–30%) on the total entrainment rate, overall combustion efficiency and heat transfer coefficient have been determined in an internally circulating fluidized bed combustor with a draft tube. The total entrainment rate increases with an increase in gas velocity to draft tube, but decreases with increasing bed temperature and excess air ratio. The overall combustion efficiency increases with increasing excess air ratio, but decreases with increasing gas velocity to draft tube. The overall combustion efficiency obtained in internally circulating fluidized beds was found to be somewhat higher than that in a bubbling fluidized bed combustor.  相似文献   

20.
Semi‐dry flue gas desulfurization was investigated with several kinds of SO2 sorbents, such as slaked lime, limestone, Mg(OH)2 and concrete pile sludge, in a powder‐particle spouted bed. Slurry droplets including sorbent fine particles were fed to a spouted bed of coarse inert particles spouted with hot gas containing SO2. SO2 removal efficiency was strongly affected by the approach to saturation temperature, Ca/S molar ratio and particle size of sorbent. Slaked lime showed the highest desulfurization efficiency. In this process, despite very short gas residence time, more than 90% SO2 removal was easily achieved by choosing appropriate conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号