首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Dongyang Chen  Min Xiao 《Polymer》2011,52(23):5312-5319
High-molecular-weight bulky-block poly(fluorenyl ether thioether ketone)s were successfully synthesized by a two steps one-pot protocol using N,N′-dimethy-S-carbamate masked dithiols for vanadium redox flow battery (VRB) application. The followed sulfonation procedure gave birth to novel sulfonated block poly(fluorenyl ether thioether ketone)s (SPFETKs) with controlled ionic exchange capacities (IEC). Membranes with proton conductivities higher than (IEC > 1.66 mequiv. g−1) or comparable to (IEC < 1.66 mequiv. g−1) that of Nafion117 membrane were achieved. The VO2+ permeabilities of SPFETKs membranes were much lower than that of Nafion117 membrane. The thermal properties, mechanical properties, oxidative stability, water uptake, proton conductivity, VO2+ permeability and cell performance were investigated in detail.  相似文献   

2.
Feng Zhang  Zhiming Cui  Lei Dai 《Polymer》2008,49(15):3272-3278
A series of novel sulfonated poly(arylene-co-binaphthalimide)s (SPPIs) were successfully synthesized via Ni(0) catalytic coupling of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and bis(chloronaphthalimide)s. Bis(chloronaphthalimide)s were conveniently prepared from 5-chloro-1,8-naphthalic anhydride and various diamines. Tough and transparent SPPI membranes were prepared and the electrolyte properties of the copolymers were intensively investigated as were the effects of different diamine structures on the copolymer characterisitics. The copolymer membrane Ia-80, with an ion exchange capacity (IEC) of 2.50 meq g−1, displayed a higher proton conductivity, i.e. 0.135 S cm−1 at 20 °C, as compared to Nafion 117 (0.09 S cm−1, 20 °C). The copolymer membrane Id-70, containing 3,3′-dimethyl-4,4′-methylenedianiline (DMMDA) units, exhibited excellent stability toward water and oxidation due to the introduction of hydrophobic methyl groups on the ortho-position of the imido bond in the copolymer. The mechanical property of Id-70 remained virtually unchanged after immersing membrane in pressured water at 140 °C for 24 h. Furthermore, the introduction of aliphatic segment a hexane-1,6-diamine (HDA) in copolymer led to a significant increase in proton conductivity and water uptake with increasing temperature; the proton conductivity of the Ic-70 membrane reached 0.212 S cm−1 at 80 °C, which was higher than Nafion 117 as well as of the membranes based on aromatic diamines at equivalent IEC values. Consequently, these materials proved to be promising as proton exchange membranes.  相似文献   

3.
In this paper, a new kind of copolymer methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS-co-MMA) was synthesized by free radical polymerization. IR-spectrum and 1H NMR were used to confirm the structure of the copolymers, and the thermal character of the copolymers was investigated with TGA and DSC. Flexible and transparent membranes based on this kind of copolymer were prepared by solution casting method. The physical properties including ionic exchange capability (IEC), water uptake, proton conductivity, methanol permeability and morphology of the membranes were investigated. These membranes showed higher water uptake though they had lower IEC compared with Nafion-117. The proton conductivity of the membrane with IEC of 0.9 mmol/g was 1.14 × 10−2 S/cm and its methanol permeability coefficient was 5.46 × 10−7 cm2/s, much lower than that of Nafion-117. Tests on cells were also carried out to measure the performance of the membrane.  相似文献   

4.
Highly disulfonated poly(aryl ether ether ketone)s (SPEEK-70) copolymer was synthesized via direct polymerization to precisely control the degree of sulfonation (Ds = 1.40), which was confirmed and estimated by 1H NMR. As expected, the proton conductivity of SPEEK-70 membrane is 0.084 S/cm at 25 °C and increases to 0.167 S/cm at 80 °C, surpassing that of Nafion® 117. However, the relatively high methanol crossover and excessively swelling properties limited its usage in DMFC. Poly(amide imide) was blended with SPEEK-70 to improve the methanol resistance and mechanical properties. These blend membranes were characterized as a function of weight fraction of PAI in terms of ion exchange capacity (IEC), water uptake, water desorption, proton conductivity and methanol permeability in detail. Although the proton conductivities decreased upon the addition of PAI, higher selectivity values defined as the ratio of proton conductivity to methanol permeability were found for the blend membranes. Therefore, the SPEEK/PAI blend membranes are promising for usage in DMFC.  相似文献   

5.
We have prepared polymer electrolyte membranes (PEMs) from poly(vinyl alcohol) (PVA) and modified PVA polyanion containing 2 or 4 mol% of 2-methyl-1-propanesulfonic acid (AMPS) groups as a copolymer. The PEMs of various AMPS content and cross-linking conditions were prepared to determine the effect of AMPS content and cross-linking conditions on PEM properties. Proton conductivity and permeability of methanol through the PEMs increased with increasing AMPS content, CAMPS, and with decreasing cross-linker concentration, CGA, because of the increase in the water content. The permeability coefficient of methanol through the PEM prepared under the conditions of CAMPS = 2.7 mol% and CGA = 0.35 vol% was about 30 times lower than that of Nafion®117 under the same measurement conditions. The proton permselectivity of the PEM, which is defined as the ratio of the proton conductivity to the permeability coefficient of methanol, gave a maximum value of 66 × 103 S cm−3 s. The value is about three times higher than that of Nafion®117.  相似文献   

6.
The Nafion/zeolite composite membranes were synthesized for polymer electrolyte fuel cells (PEMFCs) by adding zeolite in the matrix of Nafion polymer. Two kinds of zeolites, Analcime and Faujasite, having different Si/Al ratio were used. The physico-chemical properties of the composite membranes such as water uptake, ion-exchange capacity, hydrogen permeability, and proton conductivity were determined. The fabricated composite membranes showed the significant improvement of all tested properties compared to that of pure Nafion membrane. The maximum proton conductivity of 0.4373 S cm−1 was obtained from Nafion/Analcime (15%) at 80 °C which was 6.8 times of pure Nafion (0.0642 S cm−1 at 80 °C). Conclusively, Analcime exhibited higher improvement than Faujasite.  相似文献   

7.
Masanori Yamada 《Polymer》2005,46(9):2986-2992
The development of anhydrous proton conducting membrane is important for the operation of polymer electrolyte membrane fuel cell (PEMFC) at intermediate temperature (100-200 °C). In this study, we have investigated the acid-base hybrid materials by mixing of strong phosphonic acid polymer of poly(vinylphosphonic acid) (PVPA) with the high proton-exchange capacity and organic base of heterocycle, such as imidazole (Im), pyrazole (Py), or 1-methylimidazole (MeIm). As a result, PVPA-heterocycle composite material showed the high proton conductivity of approximately 10−3 S cm−1 at 150 °C under anhydrous condition. In particular, PVPA-89 mol% Im composite material showed the highest proton conductivity of 7×10−3 S cm−1 at 150 °C under anhydrous condition. Additionally, the fuel cell test of PVPA-89 mol% Im composite material using a dry H2/O2 showed the power density of approximately 10 mW cm−2 at 80 °C under anhydrous conditions. These acid-base anhydrous proton conducting materials without the existence of water molecules might be possibly used for a polymer electrolyte membrane at intermediate temperature operations under anhydrous or extremely low humidity conditions.  相似文献   

8.
A series of poly(aryl ether sulfone)s containing triptycene groups PES-x-TPD (x refers to molar percentage of TPD) were firstly synthesized through nucleophilic aromatic substitution polycondensation by using 2,5-triptycenediol (TPD), bis(4-hydroxyphenyl) sulfone (BHPS) and 4,4′-difluorodiphenyl sulfone (DFDPS). The sulfonation of copolymers was conducted at room temperature by using a mild sulfonating reagent (98% H2SO4), and the degree of sulfonation was readily and accurately controlled by adjusting the ratio of TPD and BHPS. The structures of PES-x-TPD and SPES-x-TPD were characterized by IR, 1H NMR and 13C NMR spectra. These ionomers generally showed high thermal stability and mechanical strength at low humidity regardless of high IEC value. Meanwhile, it is noteworthy that these novel SPES-x-TPD membranes with high IEC value achieved high proton conductivity in a wide range of humidity at 80 °C. For example, SPES-60-TPD with the highest IEC value 2.86 mmol/g displays the conductivity of 2.5 × 10−1 S/cm which is much higher than that of the perfluorinated Nafion membrane (1.1 × 10−1 S/cm) at 80 °C and 94% RH. At 80 °C and 34% RH, SPES-60-TPD displays the conductivity of 4.5 × 10−3 S/cm which is also higher than that of the Nafion membrane (3.0 × 10−3 S/cm). Microscopic analyses revealed that well-de?ned phase separated structures and uniform ionic pathway was formed for SPES-45-TPD membrane with the IEC of 2.29 mmol/g. Moreover, a H2/O2 fuel cell using the SPES-55-TPD (IEC = 2.68 mmol/g) also showed better performance than that of Nafion 117 at 40 °C and 30% RH.  相似文献   

9.
The synthesis and characterization of a novel hybrid organic-inorganic material formed by phosphomolybdic acid H3PMo12O40 (PMo12) and poly(2,5-benzimidazole) (ABPBI) is reported. This material, composed of two proton-conducting components, can be cast in the form of membranes from methanesulfonic acid (MSA) solutions. Upon impregnation with phosphoric acid, the hybrid membranes present higher conductivity than the best ABPBI polymer membranes impregnated in the same conditions. These electrolyte membranes are stable up to 200 °C, and have a proton conductivity of 3 × 10−2 S cm−1 at 185 °C without humidification. These properties make them very good candidates as membranes for polymer electrolyte membrane fuel cells (PEMFC) at temperatures of 100-200 °C.  相似文献   

10.
Sulfonated poly(p-phenylene)s (SPPs) containing sulfonic acid groups in their side chains had been directly synthesized by Ni(0) catalytic coupling of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and 2,5-dichlorobenzophenone. The synthesized copolymers possessed high molecular weights revealed by their high viscosity, and the formation of tough and flexible membranes by casting from DMAc solution. The copolymers exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. Transmission electron microscopic (TEM) analysis revealed that these side-chain type SPP membranes have a microphase-separated structure composed of hydrophilic side-chain domains and hydrophobic polyphenylene main chain domains. The proton conductivities of copolymer membranes increased with the increase of IEC and temperature, reaching values above 3.4 × 10−1 S/cm at 120 °C, which are almost 2-3 times higher than that of Nafion 117 at the same measurement conditions. Consequently, these materials proved to be promising as proton exchange membranes.  相似文献   

11.
A novel polyblend electrolyte consisting of KI and I2 dissolved in a blending polymer of polyvinyl pyrrolidone (PVP) and polyethylene glycol (PEG) was prepared. The formation of I3 in the polymer electrolyte was confirmed by X-ray photoelectron spectroscopy (XPS) characterization. Due to the coordinating and plasticizing effect by PVP, the ionic conductivity of the polyblend electrolyte is enhanced. The highest ionic conductivity of 1.85 mS cm−1 for the polyblend electrolyte was achieved by optimizing the compositions as 40 wt.% PVP + 60 wt.% PEG + 0.05 mmol g−1 I2 + 0.10 mmol g−1 KI. Based on the polyblend electrolyte, a DSSC with fill factor of 0.59, short-circuit density of 9.77 mA cm−2, open-circuit voltage of 698 mV and light-to-electricity conversion efficiency of 4.01% was obtained under AM 1.5 irradiation (100 mW cm−2).  相似文献   

12.
A proton conducting polymeric gel membrane was first developed from poly(ethylene oxide)-modified poly(methacrylate) (PEO-PMA) containing poly(ethylene glycol) dimethylether (PEGDE). Acetic acid (HAc) was doped by immersing the polymeric film directly in the aqueous solution of HAc. Characterization by FT-IR, XRD and AC conductivity measurements were carried out on the film electrolytes consisting of different gel compositions. The ionic conductivity of the membrane showed a sensitive variation with the immersion time and concentration of the acid in the doping solution through the changes in the contents of acid and water in the gel. The ionic conductivity also depended on the PEGDE content in the polymer. The proton conductivity was 6.2×10−4 S cm−1 at 20 °C and 1.0×10−3 S cm−1 at 80 °C for the gel prepared from HAc concentration of 3.0 mol l−1. The temperature dependence of the conductivity was found to be consistent with Arrhenius-type relationship at a temperature range from 20 to 80 °C, except for the films with low PEGDE contents. The apparent activation energy for the proton conduction was in the range of 5-30 kJ mol−1, depending on the HAc concentration and the polymer matrix composition. The FT-IR spectra of the polymeric membranes showed that HAc does not protonate the carbonyl or ester groups of the polymer matrix, but interacts with them by the hydrogen bonding interaction or weak molecular interactions.  相似文献   

13.
A novel sulfonated diamine monomer, 3-(2′,4′-diaminophenoxy)propane sulfonic acid (DAPPS), was successfully synthesized and the sulfonated polyimide (SPI) was prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and DAPPS. The resulting SPI, NTDA-DAPPS, was soluble in common organic solvents. The SPI membrane displayed proton conductivity σ values of 0.12-0.35 S/cm at temperatures ranging from 35 to 90 °C in liquid water, which were similar to or higher than those of Nafion 117 and sulfonated hydrocarbon polymers. The σ of the SPI membrane decreased significantly with decreasing relative humidity (RH) and became much lower than that of Nafion 117 at 30% RH. The SPI membrane displayed good water stability at 80 °C and was thermally stable up to 240 °C. It showed reasonable mechanical strength of a modulus of 1.3 GPa at 90 °C and 90% RH. Its methanol permeability PM was 0.57×10−6 cm2/s at 30 °C and 8.6 wt% methanol in feed, which was a fourth of that of Nafion 117. As a result, its ratio of σ/PM was 21×104 S cm−3 s, which was about 4 times larger than that of Nafion 117, suggesting potential application of the SPI membrane for direct methanol fuel cell.  相似文献   

14.
Kazuhiro Nakabayashi 《Polymer》2007,48(20):5878-5883
A novel regio-controlled poly(2,5-diphenethoxy-p-phenylene) partially functionalized with sulfonic acids has been developed for a proton exchange membrane. Poly(2,5-diphenethoxy-p-phenylene) was prepared via the oxidative-coupling polycondensation using iron(III) trichloride as an oxidant. A high molecular weight polymer over 270,000 in the weight-average molecular weight was quantitatively obtained in mild conditions. This polymer was then reacted with two and four equimolar trimethylsilylchlorosulfonate in dichloromethane to give the corresponding sulfonic acid-functionalized polymers, whose functionalities were 0.69 and 1.19 per a polymer unit, which were translated to be 1.73 and 2.49 mequiv/g in ion exchange capacity (IEC), respectively. These polymers showed excellent proton conductivity up to 2 × 10−1 S/cm at 80 °C and 95% relative humidity.  相似文献   

15.
Xianfeng Li 《Polymer》2005,46(15):5820-5827
A series of sulfonated poly(ether ether ketone ketone)s (SPEEKK)s based membranes have been prepared and evaluated for proton exchange membranes (PEM). The membranes show very good thermal and mechanical stabilities. The structures of membranes were studied with AFM. The membranes show very good proton conductive ability (25 °C: 0.007-0.04 s/cm) and methanol resistance (25 °C: 7.68×10−8 to 5.75×10−7 cm2/s). The methanol diffusion coefficients of membranes are much lower than that of Nafion (2×10−6 cm2/s). The SPEEKKs membranes show very good respective in direct methanol fuel cells (DMFC) usages.  相似文献   

16.
Smita B. Brijmohan 《Polymer》2006,47(8):2856-2864
Proton exchange membranes of sulfonated crosslinked polystyrene (SXLPS) particles dispersed in crosslinked poly(dimethyl siloxane) matrix were investigated. Three different sizes of particles—25, 8 and 0.08 μm—were used at loadings from 0 to 50 wt% and the influence of these variables on the water and methanol uptake and proton conductivity were observed. With the reduction in particle size in the composite membrane, more water or methanol uptake was observed. Three different states of water were revealed in the composite membranes by differential scanning calorimetry (DSC). The number of bound water molecules per SO3H group was 11-15 in membranes with 8- and 25-μm SXLPS. The ratio of bound to unbound water molecules was more than one in these membranes, whereas it was less than one in membranes with 0.08-μm SXLPS. The proton conductivities of the membranes increased with the increase in particle loading. At particle loadings above 35 wt%, membranes containing 8-μm SXLPS had higher conductivity compared to 25-μm SXLPS at room temperature. The conductivity of membranes containing 0.08-μm SXLPS was restricted to 10−3 S/cm because of the inherently low IEC of the particles. Increasing the temperature from 30 to 80 °C drastically enhanced the conductivity of the composite membranes compared to Nafion® 112. At 80 °C, conductivities as high as 0.11±0.04 S/cm were observed for membranes containing more than 30 wt% of 25-μm SXLPS particles.  相似文献   

17.
A Devanathan-Stachurski type diffusion cell made from a fuel cell assembly is designed to evaluate the gas transport properties of a proton exchange membrane as a function of cell temperature and gas pressure. Data obtained on this cell using the electrochemical monitoring technique (EMT) is used to estimate solubility and diffusion coefficient of oxygen (O2), carbon monoxide (CO) and hydrogen sulfide (H2S) in Nafion membranes. Membrane swelling and reverse-gas diffusion due to water flux are accounted for in the parameter estimation procedure. Permeability of all three gases was found to increase with temperature. The estimated activation energies for O2, CO and H2S diffusion in Nafion 112 are 12.58, 20 and 8.85 kJ mol−1, respectively. The estimated enthalpies of mixing for O2, CO and H2S in Nafion 112 are 5.88, 3.74 and 7.61 kJ mol−1, respectively. An extensive comparison of transport properties estimated in this study to those reported in the literature suggests good agreement. Oxygen permeability in Nafion 117 was measured as a function of gas pressures between 1 and 3 atm. Oxygen diffusion coefficient in Nafion 117 is invariant with pressure and the solubility increases with pressure and obeys Henry's law. The estimated Henry's constant is 3.5 × 103 atm.  相似文献   

18.
Previously cast ABPBI membranes were sulfonated by doping with sulfuric acid followed by heat treatment at 450 °C for 5 min in air. Sulfonation degrees between 35 and 49% of the benzimidazole rings were achieved. The resulting SABPBI membranes were impregnated with phosphoric acid (H3PO4 85%/H2O, 70:30 bath). For concentrated phosphoric acid baths (above 65%), the capacity of these membranes for phosphoric acid uptake (and consequently also their conductivity) increased with the degree of sulfonation. Sulfonated and acid doped SABPBI membranes were characterized in terms of degree of sulfonation, thermal stability (TGA), X-ray diffraction, FTIR spectroscopy and proton conductivity in the dry state, and compared with phosphoric acid impregnated ABPBI studied earlier. The maximum conductivity measured in dry conditions was 3.5×10−2 S cm−2 at 185 °C for SABPBI·4.6H3PO4 (with a degree of sulfonation of 41%) which compares favorably with non-sulfonated ABPBI and makes feasible their application in PEM Fuel Cells working at temperatures of 150-200 °C.  相似文献   

19.
Composite membranes of sulfonated poly(ethersulfone)/1,1-carbonyl diimidazole/1-(3-aminopropyl)-silane/silica (SPES/CDI/AS/SiO2) with silica of various contents (3, 5 and 8 wt%) were prepared as electrolytes for direct methanol fuel cells (DMFCs). Comparison was made with pure SPES and SPES/SiO2. The properties of the composite membranes were studied by FTIR, TGA, XRD, water and methanol uptake, proton conductivity. SPES/CDI/AS/SiO2 membranes were also characterized by scanning electron microscopy (SEM), which showed good adhesion between the modified sulfonic acid (-SO3H) groups of SPES and silica because of cross-linking with covalent bond formation and reduced cavities in the composites. This effect played an important role in reducing water uptake, methanol uptake and methanol permeability of the SPES/CDI/AS/SiO2 composites. The water and methanol uptake and also methanol permeability of the SPES/CDI/AS/SiO2 composite membrane with 8% SiO2 were found in the order 3.58%, 2.48% and 1.91×10?7 (cm2s?1), lower than those of SPES and Nafion 117. In SPES membrane of 16.94% level of sulfonation, the proton conductivity was 0.0135 s/cm at 25 °C, which approached that of Nafion 117 under the same conditions. Also, the proton conductivity of the SPES/CDI/AS/SiO2 8% membrane was 0.0186 s/cm, which was higher than that of SPES at room temperature. The preparation of SPES/SiO2 composites in the presence of AS and CDI, led to 63%, 56% and 64% reduction of water uptake, methanol uptake and methanol permeability, respectively without a sharp drop in proton conductivity of the composite membranes which featured a good balance between high proton conductivity, water and methanol uptake of SPES/CDI/AS/SiO2 membranes.  相似文献   

20.
Nanwen Li  Feng Zhang  Junhua Wang  Shenghai Li 《Polymer》2009,50(15):3600-3608
A sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) possessing a conjugated pyridinone ring was shown to be effective for dispersing multiwalled carbon nanotubes (MWCNTs) in DMSO. The dispersions in which the SPBIBI to MWCNTs mass ratio was 4:1 demonstrated the highest MWCNTs concentrations, i.e., 1.5-2.0 mg mL−1, and were found to be stable for more than six months at room temperature. Through casting of these dispersions, MWCNTs/SPBIBI composite membranes were successfully fabricated on substrates as proton exchange membranes for fuel cell applications and showed no signs of macroscopic aggregation. The properties of composite membranes were investigated, and it was found that the homogeneous dispersion of the MWCNTs in the SPBIBI matrix altered the morphology structures of the composite membranes, which lead to the formation of more regular and smaller cluster-like ion domains. As a result, and in comparison to a pristine SPBIBI membrane, the composite membranes displayed more significant proton conductivities, especially at low relative humidity, without sacrificing other excellent properties, such as thermal, dimensional and oxidative stabilities. For instance, the composite membranes with an MWCNTs content only of 0.5 wt% exhibited proton conductivities of 0.021 S cm−1 at 50 RH% and 70 °C, a value almost fourfold as high as that of the pristine SPBIBI membranes under identical conditions (0.005 S cm−1). The result was comparable to Nafion 117 (0.021 S cm−1). The homogenous dispersion of the MWCNTs and the efficient enhancement the SPBIBI performance were attributed to the π-π interaction between the pyridinone ring and the sidewalls of the MWCNTs which changed the morphological structure of composite membranes as revealed by TEM. A combination of a low methanol crossover with excellent thermo-oxidative and water stabilities indicated that the SPBIBI composite membranes were good candidate materials for proton exchange membranes in fuel cell applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号