首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J.Z YiS.H Goh 《Polymer》2003,44(6):1973-1978
Poly(methylthiomethyl methacrylate) (PMTMA) is miscible with poly(vinyl alcohol) (PVA) over the whole composition range as shown by the existence of a single glass transition temperature in each blend. The interaction between PMTMA and PVA was examined by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. The interactions mainly involve the hydroxyl groups of PVA and the thioether sulfur atoms of PMTMA, and the involvement of the carbonyl groups of PMTMA in interactions is not significant. The measurements of proton spin-lattice relaxation time reveal that PMTMA and PVA do not mix intimately on a scale of 1-3 nm, but are miscible on a scale of 20-30 nm. In comparison, we have previously found that PMTMA is miscible with poly(p-vinylphenol) and the two polymers mix intimately on a scale of 1-3 nm.  相似文献   

2.
Poly(vinyl acetate-co-vinyl alcohol) copolymers [P(VAc-co-VA)] were prepared by acidic hydrolysis of poly(vinyl acetate) (PVAc) at various reaction time, and the degree of hydrolysis was analyzed by 13C nuclear magnetic resonance spectroscopy (NMR). Blends of poly(l-lactic acid) (PLA) and P(VAc-co-VA) were prepared by a solvent casting method using chloroform as a co-solvent. The PLA/PVAc blends exhibited a single glass transition over the entire composition range, indicating that the blends were miscible systems. On the contrary, for the blends with even 10% hydrolyzed PVAc copolymer, the phase separation and double glass transition were observed. With increasing neat PVAc contents, the heat of fusion decreased and the melting peaks shifted to lower temperature. The interaction parameter indicated negative values for up to 10% hydrolyzed samples, but positive values at more than 20% hydrolyzed one. Small angle X-ray scattering analysis revealed that the long period and the amorphous layer thickness increased with PVAc composition, suggesting that a considerable amount of PVAc component located in the interlamellar region. Polarized optical microscopy showed that the texture of spherulites became rougher on increasing the PVAc content. In the case of P(VAc-co-VA) copolymer, the intensity of polarized light decreased significantly, indicating that P(VAc-co-VA) component seemed to be expelled out of the interfibrillar regions. Scanning electron microscopy analysis revealed that the significant phase separation occurred with increasing the degree of hydrolysis. In the case of 70/30 blend of PLA and P(VAc-co-VA) with 30 mol% vinyl alcohol, the P(VAc-co-VA) copolymer formed the regular domains with a size of about 10 μm.  相似文献   

3.
Fang Yang  Wantai Yang 《Polymer》2009,50(10):2328-518
Miscibility, crystallization kinetics, crystal structure, and microstructure of biodegradable poly(butylene succinate-co-butylene adipate) (PBSA)/poly(vinyl phenol) (PVPh) blends were studied by differential scanning calorimetry, optical microscopy, wide angle X-ray diffraction, and small angle X-ray scattering in detail in this work. PBSA and PVPh are miscible as evidenced by the single composition dependent glass transition temperature and the negative polymer-polymer interaction parameter. Isothermal crystallization kinetics of PBSA/PVPh blends was investigated and analyzed by the Avrami equation. The overall crystallization rates of PBSA decrease with increasing crystallization temperature and the PVPh content in the PBSA/PVPh blends; however, the crystallization mechanism of PBSA does not change in the blends. Furthermore, blending with PVPh does not modify the crystal structure of PBSA. The microstructural parameters, including the long period, thickness of crystalline phase and thickness of amorphous phase, all become larger with increasing the PVPh content, indicating that PVPh mainly resides in the interlamellar region of PBSA spherulites in the blends.  相似文献   

4.
Miscibility of biodegradable poly(ethylene succinate) (PES)/poly(vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) in this work. PES is found to be miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. Spherulitic morphology and the growth rates of neat and blended PES were investigated by optical microscopy (OM). Both neat and blended PES show a maximum growth rate value in the crystallization temperature range of 45-65 °C, with the growth rate of neat PES being higher than that of blended PES at the same crystallization temperature. The overall crystallization kinetics of neat and blended PES was also studied by DSC and analyzed by the Avrami equation at 60 and 65 °C. The crystallization rate decreases with increasing the temperature for both neat and blended PES. The crystallization rate of blended PES is lower than that of neat PES at the same crystallization temperature. However, the Avrami exponent n is almost the same despite the blend composition and crystallization temperature, indicating that the addition of PVPh does not change the crystallization mechanism of PES but only lowers the crystallization rate.  相似文献   

5.
H.L HuangS.H Goh  A.T.S Wee 《Polymer》2002,43(9):2861-2867
The miscibility and specific interactions in poly(2,2,3,3,3-pentafluoropropyl methacrylate-co-4-vinylpyridine) (PFX, X=0, 28, 40 or 54, denoting the mol% of 4-vinylpyridine unit in the copolymer)/poly(p-vinylphenol) (PVPh) blends have been studied by differential scanning calorimetry (DSC), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). DSC studies show that PF0 is immiscible with PVPh, and the presence of a sufficient amount of 4-vinylpyridine units in the copolymer produces miscible blends. AFM images also clearly show that the blends change from heterogeneous to homogeneous upon the incorporation of 4-vinylpyridine unit into the copolymer. FTIR and XPS show the existence of inter-polymer hydrogen bonding between PFX and PVPh. The intensity of the inter-polymer hydrogen bonding increases with increasing 4-vinylpyridine content in the copolymer.  相似文献   

6.
M.J. Jenkins  Y. Cao  G.A. Leeke 《Polymer》2007,48(21):6304-6310
Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(?-caprolactone) (PCL) have been produced by melt blending in the presence of supercritical CO2. Infrared spectroscopy has shown that supercritical CO2 can induce melting in PHBV at temperatures below the melting point. The miscibility of the PCL-PHBV blend system produced by both mechanical and supercritical means has been characterised by a combination of differential scanning calorimetry and dynamic mechanical thermal analysis. It has been shown that PHBV-PCL blends produced using mechanical means were immiscible, whereas the same blends produced using supercritical methods were found to be miscible as evidenced by a decrease in the glass transition temperature of the PHBV component. The development of miscibility is discussed in terms of enhanced interdiffusion resulting from the action of supercritical CO2. In addition, the infrared spectrum of the blends produced using supercritical CO2 showed negligible levels of the degradation product crotonic acid. Whereas in the samples produced using mechanical blending without supercritical CO2, there was a significant increase in the level of crotonic acid, which was interpreted as evidence of degradation.  相似文献   

7.
E.M. Woo  Chih-Pei Chiang 《Polymer》2004,45(25):8415-8424
New miscible blend systems comprised of poly(4-vinyl phenol) (PVPh) and a homologous series of polyesters of different CH2/CO ratios (from 4.5 to 7) was discovered. Miscibility has been confirmed using differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and scanning electron microscopy. The PVPh/polyesters blends investigated exhibited a single composition-dependent glass transition and homogeneous phase morphology, and they similarly exhibited a cusp in the Tg-composition relationships. This work further extended the range of aliphatic polyesters that are known to be miscible with PVPh. The Flory-Huggins interaction parameter (χ12) or energy density (B) obtained from analysis of melting point depression for PVPh/PEAz and PVPh/PHS blends are of negative values. More interestingly, the specific interactions in the PVPh/polyester blends change with the corresponding different structures in the polyester component. For the PVPh/PHS blend whose polyester constituent possesses a lower carbonyl density in the main chain (average CH2/CO ratio=7), the energy density B was found to be −1.17 cal cm−3. This value is significantly lower than those for either the PVPh/PEAz (CH2/CO=4.5) blend system (B=−7.72 cal cm−3). Miscibility, specific interactions, and peculiar Tg-composition relationships in the blends of PVPh with selected homologous polyesters are discussed.  相似文献   

8.
Miscibility has been investigated in blends of poly(butylene succinate) (PBSU) and poly(vinyl phenol) (PVPh) by differential scanning calorimetry in this work. PBSU is miscible with PVPh as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer–polymer interaction parameter, obtained from the melting depression of PBSU using the Nishi–Wang equation, is composition dependent, and its value is always negative. This indicates that PBSU/PVPh blends are thermodynamically miscible in the melt. Preliminary morphology study of PBSU/PVPh blends was also studied by optical microscopy (OM). OM experiments show the spherulites of PBSU become larger with the PVPh content, indicative of a decrease in the nucleation density, and the coarseness of PBSU spherulites increases too with increasing the PVPh content in the blends.  相似文献   

9.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

10.
The miscibility of phenolic resin and poly(vinyl acetate) (PVAc) blends was investigated by differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FT-IR) and solid state 13C nuclear magnetic resonance (NMR). This blend displays single glass transition temperature (Tg) over entire compositions indicating that this blend system is miscible in the amorphous phase due to the formation of hydrogen bonding between hydroxyl groups of phenolic resin and carbonyl groups of PVAc. Quantitative measurements on fraction of hydrogen-bonded carbonyl group using both 13C solid-state NMR and FT-IR analyses result in good agreement between these two spectroscopic techniques. According to the proton spin-lattice relaxation time in the rotating frame (TH), the phenolic/PVAc blend is intimately mixed on a scale less than 2-3 nm. Furthermore, the inter-association equilibrium constant and its related enthalpy of phenolic/PVAc blends were determined as a function of temperatures by infrared spectra based on the Painter-Coleman association model.  相似文献   

11.
DSC and optical microscopy were used to determine the miscibility and crystallinity of blends of poly(ethylene oxide) (PEO) with poly(4-vinylphenol-co-2-hydroxyethyl methacrylate) (PVPh-HEM). A single glass transition temperature was observed for all blends, indicating miscibility. A progressive decrease in the degree of crystallinity and in the size of the PEO spherullites is observed, as PVPh-HEM is added. FTIR was used to probe the intermolecular specific interactions of the blends and the miscibility of the blend is mainly attributed to PVPh-HEM/PEO intermolecular interactions via hydrogen bonding.  相似文献   

12.
The miscibility and phase behavior of poly(4-vinylphenol-co-methyl methacrylate) (PVPhMMA50) containing 50% of methyl methacrylate with random copolymers of poly(styrene-co-4-vinylpyridine) (PS4VPy) containing 5, 15, 30, 40, and 100% of 4-vinylpyridine, respectively, were investigated by differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). It was shown that for a composition of 4-vinylpyridine less than 30%, all blends of PVPhMMA50/PS4VPy are immiscible, characterized by the apparition of two glass transitions (Tg) over their entire composition range. However, above this composition, a single Tg has been observed in all the blends of PVPhMMA50 and PS4VPy. When the amount of vinylpyridine exceeds to 40% in PS4VPy, the obtained Tgs of PVPhMMA50/PS4VPy blends were found to be significantly higher than those observed for each individual component of the mixture indicating that these blends are able to form interpolymer complexes. FTIR analysis reveals the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and pyridyl groups and intensifies when the amount of 4VPy is increased in PS4VPy copolymers. Furthermore, the quantitative FTIR study carried out for PVPhMMA50/PS4VPy blends was also performed for the vinylphenol and vinylpyridine functional groups. These results were also confirmed by SEM study. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Y KongJ.N Hay 《Polymer》2002,43(6):1805-1811
Poly(ethylene terephthalate)/polycarbonate blends were produced in a twin-screw extruder with and without added transesterification catalyst, lanthanum acetyl acetonate. The miscibility of the blends was studied from their crystallisation behaviour and variation in glass transition temperature with composition using differential scanning calorimetry, scanning electron microscopy and change in mechanical properties. The blends prepared without the catalyst showed completely immiscible over all compositions, while those prepared in the presence of the catalyst showed some limited miscible. The presence of PC inhibited the crystallisation of PET but this was much greater in the blends prepared in the presence of catalyst suggesting that some reaction had taken place between the two polyesters. The tensile properties showed little differences between the two types of blends.  相似文献   

14.
Films of polymer blends having various contents of poly(vinyl alcohol) (PVA) and polyacrylamide (PAM) were prepared by the solution casting technique using water as a common solvent. The thermal, mechanical and morphological properties of these blends before and after exposure to various doses of gamma radiation, up to 100 kGy, have been investigated. The visual observation and reflectance measurements show that PVA/PAM blends are miscible over a wide range of composition. Moreover, the differential scanning calorimetry (DSC) thermograms show only a single glass transition temperature (Tg), but not those of PVA or PAM homopolymers, giving further support to the complete compatibility of such blends. The Tg of PVA/PAM blends decreases with increasing content of PAM but increases after exposure to gamma irradiation, indicating the occurrence of crosslinking. These findings were demonstrated by the scanning electron micrographs of the fracture surfaces and the tensile mechanical properties. The TGA thermograms and percentage mass loss at different decomposition temperatures show that unirradiated PVA homopolymer possesses higher thermal stability than PAM homopolymer and their blends within the heating temperature range investigated, up to 250 °C. An opposite trend is observed within the temperature range 300–500 °C. In general, the thermal stability of homopolymers or their blends improves slighly after exposure to an irradiation dose of 100 kGy. These findings are clearly confirmed by the calculated activation energies of the thermal decomposition reaction of the homopolymers and the blends. © 2003 Society of Chemical Industry  相似文献   

15.
Blends of poly(vinyl chloride) with chlorinated poly(vinyl chloride) (PVC), and blends of different chlorinated poly(vinyl chlorides) (CPVC) provide an opportunity to examine systematically the effect that small changes in chemical structure have on polymer-polymer miscibility. Phase diagrams of PVC/CPVC blends have been determined for CPVC's containing 62 to 38 percent chlorine. The characteristics of binary blends of CPVC's of different chlorine contents have also been examined using differential calorimetry (DSC) and transmission electron microscopy. Their mutual solubility has been found to be very sensitive to their differences in mole percent CCl2 groups and degree of chlorination. In metastable binary blends of CPVC's possessing single glass transition temperatures (Tg) the rate of phase separation, as followed by DSC, was found to be relatively slow at temperatures 45 to 65° above the Tg of the blend.  相似文献   

16.
Summary Liquid natural rubber of two different molecular masses, viz., and 9500, each with epoxidation of 20 and 50 mol % (L-ELNR-20, L-ELNR-50, and H-ELNR-20, H-ELNR-50) were prepared and blended with polyvinyl chloride (PVC). Miscibility of these blend systems was studied with special reference to blend ratio, mol % of epoxidation and effect of molecular mass of the liquid rubber by various techniques such as stress – strain measurement, SEM studies and DSC analysis. It was observed that PVC/L-ELNR-50 and PVC/H-ELNR-50 systems were homogenous and miscible compared to PVC/L-ELNR-20 and PVC/H-ELNR-20 blends and the maximum modification in properties was found for the former systems. Results of blends with 20 mol % epoxidised liquid rubber showed that the components are only partially miscible and hence they are heterogeneous systems. Miscibility achieved with an increase in mol per cent epoxidation of the liquid rubber is explained on the basis of the higher polar interaction between the blend components. Analysis of the blends also revealed that the lower molecular mass epoxidised rubber is aiding better property modifications than the higher molecular mass rubber. This is explained by the fact that rubber with lower chain length provides greater penetration into the PVC interstices enabling better solubilisation of the PVC segments.  相似文献   

17.
A.A Bhutto  D VeselyB.J Gabrys 《Polymer》2003,44(21):6627-6631
The miscibility and specific interactions of polystyrene (PS) and sodium sulfonated polystyrene (Na-SPS) with poly(vinyl methyl ether) (PVME) blends (ranging from 10 to 90% PS by weight) were examined experimentally by FTIR spectroscopy. The FTIR studies at different temperatures have shown that changes in spectra of polymer blends, as reported in the literature can be explained by temperature changes in pure homopolymers. This indicates that molecular interactions, which are responsible for miscibility, are not detectable by infrared absorptions and are therefore of unspecific strength and location. The FTIR of SPS/PVME blends show that sulfonate groups of PS affect polymer miscibility through changes in configuration of molecules, rather than through direct interaction with the PVME.  相似文献   

18.
Miscibility characteristics of poly(amide):poly(vinyl pyrrolidone) (PA:PVP) blends containing a soybean-derived phytochemical called “genistein” have been investigated using differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The occurrence of hydrogen bonding in the binary PA/genistein (PA/G) and PVP/genistein (PVP/G) pairs as well as their ternary blends has been confirmed by Fourier transformed infrared spectroscopy (FTIR). On the basis of DSC and POM data, the morphology phase diagram of PA:PVP/G blends is mapped out, which consisted of various coexistence regions such as isotropic, liquid + liquid, liquid + crystal, liquid + liquid + crystal, and solid crystal regions. Subsequently, PA:PVP membranes modified with genistein were prepared by coagulation via solvent (dimethyl sulfoxide, DMSO) and non-solvent (water) exchange. Addition of genistein reduced the miscibility gap of the PA/DMSO/water system. The actual amounts of genistein in the final membranes have been quantified as a function of the genistein in feed. Of particular interest is the development of the gradient cross-sectional porous channels, showing the progressively larger diameters from the surface to the bottom substrate with the progression of solvent/non-solvent exchange or solvent power. Scanning electron microscopy (SEM) investigation of the morphologies of the modified membranes revealed that genistein crystals were embedded on the membrane surface as well as in the cross-section even at a very low feed concentration of genistein. A schematic of a coagulation pathway was inscribed inside a prism phase diagram in order to comprehensively illustrate the formation of genistein modified PA:PVP membranes through the solvent/non-solvent exchange process followed by drying.  相似文献   

19.
Zhonglin Luo 《Polymer》2010,51(1):291-11052
The miscibility of poly(ethylene oxide) (PEO)/poly(vinyl chloride) (PVC) blends are investigated by atomistic molecular dynamics and mesoscale dissipative dynamics simulations. The specific volumes of three PEO/PVC blends (with weight ratio at 70/30, 50/50 and 30/70) as well as pure PEO and PVC are examined as a function of temperature. The glass transition temperatures are estimated to be 251, 268, 280, 313 and 350 K for pure PEO, PEO/PVC 70/30, 50/50, 30/70 and pure PVC. Among different energy contributions, the torsion and van der Waals energies exhibit pronounced kinks versus temperature. The Flory-Huggins parameters determined from the cohesive energy densities and the radial distribution functions of the inter-molecular atoms suggest that PEO/PVC 70/30 and 30/70 blends are more miscible than 50/50 blend. This is further supported by the morphologies of PEO/PVC blends, in which the 50/50 blend exhibits segregated domains implying a weak phase separation. Hydrogen bonds are found to form between O atoms of PEO and H atoms of PVC, with a larger degree in PEO/PVC 70/30 and 30/70 blends than in 50/50 blend. The addition of PVC into PEO suppresses the mobility of PEO chains, which is consistent with the experiment observation of decreased crystallization rate as well as crystallization temperature of PEO.  相似文献   

20.
X.F LuoX Hu  X.Y ZhaoS.H Goh  X.D Li 《Polymer》2003,44(18):5285-5291
The miscibility and interactions in blends and complexes of poly(4-methyl-5-vinylthiazole) (PMVT) with poly(p-vinylphenol) (PVPh), poly(acrylic acid) (PAA) and poly(vinylphosphonic acid) (PVPA) were studied. PMVT formed complexes with PVPA but not with PVPh and PAA. Each of the blends of PMVT with PVPh and PAA showed a single glass transition temperature (Tg), indicating miscibility. Fourier-transform infrared spectroscopic and X-ray photoelectron spectroscopic studies provided the existence of interactions in the PMVT blends and complexes. The XPS studies indicated that the thiazole nitrogen atoms are involved in hydrogen-bonding interactions with PVPh and PAA, and ionic interactions with PVPA. The sulfur atoms of PMVT also interact with PVPh, PAA and PVPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号