首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Do Hoon Kim  William R. Rodgers 《Polymer》2007,48(20):5960-5978
The structure-property relationships of thermoplastic olefin (TPO)-based nanocomposites prepared by melt processing are reported with a main focus on the ratio of maleic anhydride-grafted polypropylene (PP-g-MA) to organoclay. The morphological observations by transmission electron microscopy, atomic force microscopy, and X-ray diffraction are presented in conjunction with the mechanical and rheological properties of these nanocomposites. Detailed quantitative analyses of the dispersed clay particles revealed that the aspect ratio of clay particles decreased as clay content increased but increased as the amount of PP-g-MA increased. Analysis of the elastomer phase revealed that the aspect ratio of the elastomer phase increased in both cases. The presence of clay causes the elastomer particles to become highly elongated in shape and retards the coalescence of the elastomer particles. The modulus and yield strength are enhanced by increasing the PP-g-MA/organoclay ratios. High levels of toughness of the TPO can be maintained when moderate levels of (organoclay) MMT and PP-g-MA are used. The rheological properties suggested that the addition of clay particles and PP-g-MA has a profound influence on the long time stress relaxation of the TPO nanocomposites. Based on these analyses, it is clear that it is important to optimize the ratio of PP-g-MA and organoclay to obtain the desired balance of mechanical properties and processing characteristics for TPO nanocomposites.  相似文献   

2.
The linear thermal expansion behavior of thermoplastic polyolefin, or TPO, nanocomposites based on a polypropylene/elastomer/masterbatch mixture was examined using a thermomechanical analyzer (TMA). For these experiments the masterbatch consisted of a mixture of organoclay and maleated polypropylene. The nanocomposites were prepared in a twin-screw extruder. The effects of both the elastomer domains and the filler particles on the thermal expansion behavior of the nanocomposites were investigated by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The addition of elastomer tends to increase the linear coefficient of thermal expansion, CTE. On the other hand, the addition of clay significantly reduces the thermal expansion in both the flow (FD) and transverse directions (TD) of injection molded specimens; however, the extent of reduction of CTE in the FD is much greater than in the TD. The CTE in the normal direction (ND) increases when either the clay or elastomer content is increased. The trends in thermal expansion for the nanocomposites are discussed in terms of the morphology of both dispersed clay and elastomer phases based on TEM and AFM observations and subsequent particle analyses.  相似文献   

3.
Significant reductions in linear thermal expansion coefficients in the flow and transverse directions of injection-molded specimens of thermoplastic polyolefin, or TPO, nanocomposites were achieved by controlling the maleated polypropylene (PP-g-MA)/organoclay ratio. Linear thermal expansion behavior was examined using a thermomechanical analyzer (TMA). The trends in thermal expansion for the nanocomposites are discussed in terms of the morphology of both dispersed clay and elastomer phases by means of transmission electron microscopic (TEM) and atomic force microscopic (AFM) observations and subsequent particle analyses. A higher PP-g-MA/organoclay ratio causes an increase in the aspect ratio of clay particles along the flow direction (FD) and transverse direction (TD) for the injection-molded specimens; however, the aspect ratio along the FD was higher than that along the TD. On the other hand, the aspect ratio of elastomer particles along the FD was much higher than that along the TD. Furthermore, highly elongated elastomer particles along the FD were observed. The combined effect of the mechanical constraint by organoclay and the highly elongated elastomer particles caused at high PP-g-MA contents was responsible for the significant reduction of thermal expansion for these materials.  相似文献   

4.
Rubber‐toughened polypropylene (PP) nanocomposites containing organophilic layered silicates were prepared by means of melt extrusion at 230 °C using a co‐rotating twin‐screw extruder in order to examine the influence of the organoclay and the addition of PP grafted with maleic anhydride (PPgMAH) as a compatibilizer on the morphological, mechanical and thermal properties. The mechanical properties of rubber‐toughened polypropylene nanocomposites (RTPPNCs) were studied through tensile, flexural and impact tests. Scanning electron microscopy (SEM) was used for investigation of the phase morphology and rubber particles size. X‐ray diffraction (XRD) was employed to characterize the formation of nanocomposites. The thermal properties were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dynamic mechanical properties were examined by using dynamic mechanical analysis (DMA). From the tensile and flexural tests, the optimum loading of organoclay in RTPP was found to be 6 wt%. The optimum loading of PPgMAH, based on the tensile and flexural properties, was also 6 wt%. The increase in the organoclay and PPgMAH content resulted in a severe embrittlement, manifested by a drop in the impact strength and tensile elongation at break. XRD studies revealed that intercalated RTPPNCs had been successfully prepared where the macromolecular PP segments were intercalated into the interlayer space of the organoclay. In addition, the organoclay was dispersed more evenly in the RTPPNC as the PPgMAH content increased. TGA results revealed that the thermal stability of the RTPPNC improved significantly with the addition of a small amount of organoclay. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
Polyethylene-octene elastomer/organoclay nanocomposites were prepared by a melt blending process. It was found that the addition of a small amount of glycidyl methacrylate and a peroxide during the melt mixing induced facile intercalation of the polymer chains into the organoclay and dispersion of the clay particles on the nanometer scale, which was confirmed by X-ray diffraction and transmission electron microscopy. Enhanced mechanical properties of the nanocomposites were observed from tensile, dynamic mechanical, and tear testing. Oscillatory shear-controlled rheology in the molten state of the nanocomposites revealed a pseudo solid-like behavior as well as an enhanced shear thinning behavior.  相似文献   

6.
Nanocomposites composed of organoclay and thermoplastic vulcanizates (TPVs) based on uncompatibilized or compatibilized polypropylene (PP)/ethylene–propylene–diene rubber (EPDM) blends were prepared in this study. The morphology of the nanocomposites was studied with wide‐angle X‐ray diffraction and transmission electron microscopy, which suggested that the addition of the compatibilizer played a key role in determining the morphology of the composites because of their interaction with the clay surface. Scanning electron microscopy study indicated the changes in the morphology of the rubber particles. Dynamic mechanical analysis was also applied to the analysis of these phenomena. Moreover, for nanocomposites with uncompatibilized PP/EPDM blends as the matrix, the samples showed tensile enhancement compared with neat TPV. Although the addition of the compatibilizer changed tensile properties of the composites in a rather different trend, the tensile modulus increased dramatically when the compatibilizer was added. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40618.  相似文献   

7.
Lili Cui 《Polymer》2007,48(6):1632-1640
The compatibilization effects provided by amine functionalized polypropylenes versus those of a maleated polypropylene, PP-g-MA, for forming polypropylene-based nanocomposites were compared. Amine functionalized polypropylenes were prepared by reaction of maleated polypropylene, PP-g-MA, with 1,12-diaminododecane in the melt to form PP-g-NH2 which was subsequently protonated to form PP-g-NH3+. Nanocomposites were prepared by melt processing using a DSM microcompounder (residence time of 10 min) by blending polypropylene and these functionalized materials with sodium montmorillonite, Na-MMT, and with an organoclay. X-ray and transmission electron microscopy plus tensile modulus tests were used to characterize those nanocomposites. Composites based on Na-MMT as the filler showed almost no improvement of tensile modulus compared to the polymer matrix using any of these functionalized polypropylenes, which indicated that almost no exfoliation was achieved. All the compatibilized nanocomposites using an organoclay, based on quaternary ammonium surfactant modified MMT, as the filler had better clay exfoliation compared to the uncompatibilized PP nanocomposites. Binary and ternary nanocomposites using amine functionalized polypropylenes had good clay exfoliation, but no advantage over those using PP-g-MA. The PP-g-MA/organoclay and PP/PP-g-MA/organoclay nanocomposites showed the most substantial improvements in terms of both mechanical properties and clay exfoliation.  相似文献   

8.
C.G. Martins  D.R. Paul 《Polymer》2009,50(7):1743-1057
Rubber toughened polypropylene nanocomposites using two types of modified montmorillonite (organoclay) were explored with the objective of achieving an improved balance between stiffness and toughness. The effect of three blending sequences on microstructure and properties of the ternary nanocomposites was also investigated. A commercial grade of ethylene/vinyl acetate copolymer (EVA) containing 18 wt% of vinyl acetate was used as the impact modifier for polypropylene and an acrylic acid grafted polypropylene was used to compatibilize the systems studied. The toughened nanocomposites samples were prepared by melt compounding in a twin-screw extruder; the morphology and mechanical properties of the resulting materials were characterized by X-ray scattering, electron microscopy and tensile and impact testing. The results show that incorporation of EVA increases the toughness of the polypropylene but its stiffness decreased markedly due to the incorporation of the low modulus component. The addition of organoclay increased the modulus slightly for all the ternary nanocomposites with respect to the blend, but it remains lower than that of neat PP. Surprisingly, addition of organoclay to the blends promoted a drastic increase in the notched Izod impact strength and a considerable alteration of the shape of the dispersed EVA phase when the organoclay is located in this phase. Moreover, it was found that the blending sequence effects on the morphology and properties of the mixtures are dependent on the organoclay used.  相似文献   

9.
A series of polymer‐clay nanocomposite (PCN) materials, consisting of thermoplastic polystyrene (PS) sample and dispersing inorganic organoclay platelets, were successfully prepared. First, organoclay was prepared by performing cationic exchange reactions between the sodium ions existing in the interlayer region of the clay mineral and intercalation agent, followed by dispersing the organophilic clay into a PS basis through the melt intercalation approach performed by a twin‐screw mixing method. The as‐prepared PCN materials in the form of a pellet subsequently characterized using the powder X‐ray diffraction (XRD) and the transmission electron microscopy (TEM). In this study, it is found that the wear resistance of PS to be effectively enhanced by the incorporation of low loading organophilic clay platelets. The surface morphological image for the neat PS and PS‐clay after a wear resistance test has also been compared and identified by the scanning electron microscopy (SEM). Furthermore, the effect of organoclay on three other different measurement types of mechanical properties for as‐prepared PCN materials, e.g., flexural tests, impact tests, and micron‐nano indenter tests were performed and compared. Generally, PCN materials exhibited an obvious enhancement of mechanical properties of neat polymer by an incorporated low loading of organophilic clay platelets into a polystyrene matrix used for the evaluation of mechanical properties as‐prepared samples. For example, mechanical strength (excepting flexural strength) almost remain same beyond 3 wt % clay loading in PS, whereas much detrimental effect being observed in the wear loss in case of PCNs with 5 wt % clay than 3 wt %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The differences that direct melt compounding and masterbatch dilution cause in the properties of melt compounded polypropylene (PP) and high density polyethylene‐based (PE‐HD) nanocomposites are presented. The results include comparison of properties and morphology of directly melt processed organoclay nanocomposites with similar compounds diluted from commercial and in‐house‐made masterbatches to clay concentrations of 1, 3, 6, and 8 wt%. The compounds were prepared with a co‐rotating Brabender twin‐screw extruder. The degree of exfoliation and the dispersion of the nanoclay were verified with transmission electron microscopy and X‐ray diffraction. Thermal stability of the materials was examined with thermogravimetric analysis and the mechanical properties of the compounded materials were also determined. The most promising results regarding mechanical behavior were achieved with the in‐house‐made masterbatch in the form of a notable increase in Young's modulus in both matrices. There was also a distinct increase in impact strength when masterbatch was used. Changes were more pronounced in case of PP. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

11.
Do Hoon Kim  William R. Rodgers 《Polymer》2007,48(18):5308-5323
The structure-property relationships of polypropylene (PP)-based nanocomposites prepared by melt processing have been investigated with a main focus on the ratio of polypropylene grafted with maleic anhydride (PP-g-MA) to organoclay. The morphological observations by transmission electron microscopy and X-ray diffraction are presented in conjunction with the mechanical, rheological and thermal expansion properties of these nanocomposites. Detailed morphological studies and subsequent quantitative particle analyses for the dispersed clay phase reveal that the aspect ratio of clay particles decreases as the amount of clay increases, and it increases as the amount of PP-g-MA increases. The rheological properties suggest that the extent of a percolation network can be enhanced by increasing the number of organoclay particles at a fixed ratio of PP-g-MA to organoclay and by increasing the degree of exfoliation at fixed clay content. However, mechanical and thermal expansion behaviors do not improve correspondingly in all cases because of the reduction of matrix properties by PP-g-MA. The reduction of the modulus and the increase in the expansion of the polymer matrix caused by the presence of PP-g-MA are compared to the prediction of the Chow model. Clearly, the amount of PP-g-MA added along with its lower crystallinity are important factors affecting the mechanical and thermal expansion properties of PP-based nanocomposites.  相似文献   

12.
BACKGROUND: Both exfoliated and toughened polypropylene‐blend‐montmorillonite (PP/MMT) nanocomposites were prepared by melt extrusion in a twin‐screw extruder. Special attention was paid to the enhancement of clay exfoliation and toughness properties of PP by the introduction of a rubber in the form of compatibilizer toughener: ethylene propylene diene‐based rubber grafted with maleic anhydride (EPDM‐g‐MA). RESULTS: The resultant nanocomposites were characterized using X‐ray diffraction, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis and Izod impact testing methods. It was found that the desired exfoliated nanocomposite structure could be achieved for all compatibilizer to organoclay ratios as well as clay loadings. Moreover, a mechanism involving a decreased size of rubber domains surrounded with nanolayers as well as exfoliation of the nanolayers in the PP matrix was found to be responsible for a dramatic increase in impact resistance of the nanocomposites. CONCLUSION: Improved thermal and dynamic mechanical properties of the resultant nanocomposites promise to open the way for highly toughened super PPs via nanocomposite assemblies even with very low degrees of loading. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
Youngjae Yoo  Young-Tai Yoo 《Polymer》2010,51(21):4907-4915
An amorphous polyamide (a-PA) was blended with an ethylene-1-octene (EOR) elastomer with organoclays present to control the elastomer particle size. Four different organoclays, M3(HT)1, M2(HT)2, M1H1(HT)2, and (HE)2M1T1 and two different mixing protocols were used to investigate the effect of the organoclay structure and mixing protocol on the morphology and properties of the resulting blends. Wide angle X-ray scattering, transmission electron microscopy, and stress-strain behavior were used to evaluate the degree of exfoliation of the organoclays and the morphology of the elastomer particles for these blends. A detailed particle analysis was made to provide a quantitative assessment of elastomer particle size. The size and shape of the elastomer particles were dramatically affected by the amount of organoclay but the organoclay type and the mixing protocol led to slight differences. Broadly speaking, most of the MMT platelets are well exfoliated in the a-PA phase, but some locate at the interface and tend to envelop the EOR phase. The mechanical properties were not significantly affected by the organoclay type or the mixing protocol. While the organoclays reduced the EOR particles to size range where toughness might be expected, all blends proved to be brittle. A clear trade-off was observed between the Izod impact strength and tensile modulus for these blends containing organoclays.  相似文献   

14.
The objective of this work was to investigate the effect of elastomer polarity on phase structure and mechanical properties of PP nanocomposites. The nonpolar and polar elastomers studied were polyethylene octene (POE) and polyethylene octene grafted maleic anhydride (POEgMAH), respectively. The results from mechanical studies showed that the POEgMAH-toughened polypropylene nanocomposites have higher Izod impact strength but lower tensile and flexural properties than the unmaleated ones. X-ray diffraction (XRD) was used to characterize the formation of nanocomposites. XRD studies revealed that intercalated rubber-toughened PP nanocomposites (RTPPNC) had been successfully prepared where the macromolecule segments PP were intercalated into the interlayer space of organoclay. XRD also indicated that the incorporation of polar POEgMAH elastomers into PP nanocomposites contribute to a better intercalation effect and formed a more exfoliated combinations structure compared to POE. Scanning electron microscope (SEM) was used for the investigation of the phase morphology and rubber particle size and particle-size distribution. SEM study revealed a two-phase morphology where POE as droplets dispersed finely and uniformly in the PP matrix. The POEgMAH-toughened PP nanocomposites shows a much finer dispersion of elastomer particles than POE-toughened PP nanocomposites.  相似文献   

15.
Rajkiran R. Tiwari 《Polymer》2011,52(24):5595-5605
Room temperature Izod impact strength was determined for polypropylene (PP)/ethylene-co-octene elastomer (EOR) blends and nanocomposites, containing organoclays based on montmorillonite (MMT), at fixed elastomer content of 30 wt% and 0-7 wt% MMT. A ratio of maleated polypropylene, PP-g-MA to organoclay of unity was used as a compatibilizer in the nanocomposites. The organoclay serves to reduce the size of the EOR dispersed phase particles and facilitates toughening. The Izod impact strength is also influenced by the molecular weight of PP, elastomer octene content, elastomer MFI in addition to MMT content. Nanocomposites based on a low molecular weight polypropylene (L-PP) containing a higher octene content elastomer showed higher impact strength at lower MMT contents compared to those based on a low octene content elastomer. The effect of elastomer octene content on impact strength of high molecular weight polypropylene (H-PP) nanocomposites is not so significant. Elastomers having a melt flow index (MFI) in the range of 0.5-1.0 showed significant improvement in the impact strength of L-PP based nanocomposites. Most H-PP/EOR blends gave ‘super-tough’ materials without MMT and maintain this toughness in the presence of MMT. The critical elastomer particle size below which the toughness is observed is reduced by decreasing the octene content of the elastomer. For the similar elastomer particle sizes in nanocomposites, the impact strength varies as H-PP > M-PP > L-PP. The tensile modulus and yield strength improved with increasing MMT content; however, elongation at break was reduced. The extruder-made TPO showed a good-balance of properties in the presence of MMT compared to reactor-made TPO having similar modulus and elastomer content.  相似文献   

16.
In this study, polystyrene (PS)/montmorillonite nanocomposites were prepared by melt intercalation, in situ polymerization, and masterbatch methods. In the masterbatch method, as the first step, a high clay content composite of PS–organoclay (masterbatch) was prepared by in situ polymerization, and then the prepared masterbatch was diluted to desired compositions with commercial PS in a twin‐screw extruder. The structure and mechanical properties of the nanocomposites were examined. X‐ray diffraction (XRD) analysis showed that the d‐spacing of the in situ formed nanocomposites increased from 32.9 Å for the organoclay powder to 36.3 and 36.8 Å respectively in nanocomposites containing 0.73 and 1.6 wt% organoclay, indicating intercalation. However, the d‐spacing of the other prepared materials remained nearly unchanged when compared with pure organoclay powder. Thus, at these low clay contents, in situ formed nanocomposites showed the best improvement in mechanical properties including tensile, impact strength, and Young's modulus. In situ polymerization method did not prove to be efficient at high clay loadings in terms of intercalation and mechanical properties. At high clay loadings, the effects of the three methods in promoting mechanical properties were not significantly different from each other. POLYM. COMPOS., 27:249–255, 2006. © 2006 Society of Plastics Engineers  相似文献   

17.
The phase morphology and mechanical properties of polypropylene (PP) composites containing ethylene–octene elastomer (EOR) and calcium carbonate (CaCO3) filler were investigated by comparing the toughening effect of unmodified EOR with EOR grafted with maleic anhydride (EOR–MA). EORs of various MA contents were prepared by free‐radical grafting of MA onto the EOR backbone using a reactive extrusion process. The composite morphology was directly explored by scanning electron microscopy technique and indirectly explored by differential scanning calorimetry and dynamic mechanical analysis. Separate dispersion of the elastomer and filler particles was achieved by using unmodified EOR. Modification of EOR by maleic anhydride grafting resulted in encapsulation of the filler particles. The mechanical properties of the composites were found to depend mainly on composite morphology and composition and, to a lesser degree, on maleic anhydride concentration. The results of this study showed that when composites contained an equal or higher amount of elastomer relative to filler, a composite with a separate dispersion structure was preferred. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3557–3562, 2003  相似文献   

18.
Different blends of a linear polypropylene (L-PP), a long-chain branched polypropylene (LCB-PP), and a polyolefin elastomer (POE) are prepared and foamed using core-back injection molding. The objective is to analyze the use of POE and LCB-PP as complementary strategies to improve cellular polymers’ impact response. Different parameters are then studied in blends and injection molded plaques to understand the samples’ mechanical behavior. Parameters such as the interfacial tension, elastomer morphology, extensional rheology, cellular structure, and crystallization behavior are characterized in detail. The addition of POE allows improving the impact response of both the solids and cellular polymers, but the stiffness is reduced. On the other hand, the substitution of L-PP by LCB-PP, in blends containing POE, results in solids and cellular materials with both better stiffness and better impact properties, due to the different crystalline morphology comprising the samples, a different cellular orientation, and thicker solid skin.  相似文献   

19.
The morphology and/or mechanical properties of simultaneous interpenetrating networks, SINs, based on castor oil elastomers and crosslinked polystyrene, were studied by electron microscopy, stress–strain analysis, and/or Izod impact tests. Several synthetic details were changed systematically and the concomitant changes in morphology or particular properties observed. The toughness of elastomer SINs increased with decreasing domain size of the polystyrene dispersed phase. The use of a prepolymer for the elastomer network synthesis promotes the formation of larger polystyrene domains. The impact resistance of the SINs increased with the total elastomer content. Properly crosslinked and postcured compositions developed impact energies of about 60–70 J/m. SINs based on castor oil-derived elastomers and crosslinked polystyrenes form prototype engineering materials which already compared satisfactorily to commercial polymers in terms of mechanical behavior.  相似文献   

20.
Riku Uotila 《Polymer》2005,46(19):7923-7930
The morphology and mechanical properties of polypropylene/elastomer/silica composites were investigated with the aim of improving stiffness and impact resistance. Two different types of silica were tested: Precipitated silica and polymer grade microsilica (silica fume). The composites were compatibilized with commercial polypropylene and polyethylene containing maleic anhydride functionality as a means of controlling their microstructure and ultimately their mechanical properties. Comparisons were made with surface coated silica and hydroxyl-functionalized copolymers prepared with metallocene catalysts. The effect of adding the polymeric compatibilizers was assessed by morphology studies, thermal analysis and mechanical testing. Significant improvements in impact strength were obtained by tailoring the microstructure of polypropylene/elastomer/microsilica composites. With introduction of PP-g-MAH as compatibilizer, stiffness was enhanced simultaneously with impact strength. DSC curves of crystallization provided evidence to support the formation of different microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号