首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flammable, thermal, and mechanical properties of intumescent flame retardant (IFR) polypropylene/layered double hydroxide (PP/IFR/LDH) nanocomposites with the LDHs of different divalent cations and IFR system of ammonium polyphosphate/pentaerythritol (APP/PER) have been studied by X-ray diffraction (XRD), cone calorimeter test (CCT), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), limiting oxygen index (LOI), UL-94 test, and mechanical measurements. The XRD results show that the exfoliated PP/IFR/LDH nanocomposites possess the nanoscaled dispersion characteristic. The data from the CCT tests show the synergistic effect of LDHs with IFR can decrease considerably the HRR, MLR, and EHC values of the PP/IFR/LDH nanocomposites, in which the pk-HRR, pk-MLR, and pk-EHC values of the PP/IFR/ZnAl-LDH sample decrease to 318 kW/m2, 0.081 g/m2 s, 61.8 MJ/kg from the corresponding values 506 kW/m2, 0.115 g/m2 s, 71.8 MJ/kg of the PP/IFR sample. The LOI and UL-94 data further support the evidence that the flame retardant synergistic effects of LDHs with IFR increase the LOI values and UL-94 rating, especially for the LDHs with the transition ions (Zn, Cu) the LOI values can reach 33% and the UL-94 pass the V-0 rating. The TGA results demonstrate the LDHs can greatly improve the thermal stabilities of PP/IFR/LDH nanocomposites by increasing the thermo-oxidation decomposition temperature and charred residues. The morphological structures observed by SEM have demonstrated the LDHs can promote formation of compact charred layers. The data from the mechanical tests show the tensile strength and elongation at break of the PP/IFR/LDH samples are basically unchanged compared with the PP/IFR sample. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

2.
Abstract

The synergistic effects of Fe organic modified montmorillonite (Fe-OMMT) with layered double hydroxides (LDHs) in ethylene vinyl acetate copolymer/LDH (EVA/LDH) composites have been studied using thermal analysis [thermogravimetric analysis (TGA)], limiting oxygen index (LOI), UL-94 test and cone calorimeter test (CCT). The results showed that the addition of a given amount of Fe-OMMT apparently increased the LOI value and the rating in the UL-94 test. The results from the LOI and UL-94 tests show that Fe-OMMT can act as flame retardant synergistic agents in EVA/LDH composites. The CCT data indicated that the addition of Fe-OMMT in the EVA/LDH system can greatly reduce the heat release rate. The TGA data show that Fe-OMMT, as an excellent flame retardant synergist of LDH, cannot increase the thermal degradation temperature and the charred residues.  相似文献   

3.
The effect of dispersion of clay in rubber on the mechanical properties and flame retardance of rubber/montmorillonite (MMT) nanocomposites and rubber/MMT microcomposites were investigated in the present article, and the results were compared with the performance of silica reinforced rubber composites. Cone calorimeter test and limiting oxygen index test were employed to evaluate the flame retardance. From the results, it could be seen that the rubber/MMT nanocomposites always possessed the best flame retardance, such as lower peak heat release rate and higher fire performance index value. In addition, the rubber/MMT nanocomposites also showed better mechanical properties than the pure rubber and the other composites, especially in tear strength. With the rubber/silica composites, as expected, the silica could appropriately endow the rubber with flame retardance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The pyrolysis and flammability of phosphonium‐modified layered silicate epoxy resin nanocomposites (EP/LS) were evaluated when LS was combined with two flame retardants, melamine borate (MB) and ammonium polyphosphate (APP), that also act via a surface protection layer. Thermogravimetry (TG), TG coupled with Fourier Transform Spectroscopy (TG‐FTIR), oxygen index (LOI), UL 94 burning chamber (UL 94) and cone calorimeter were used. The glassy coating because of 10 wt % MB during combustion showed effects in the cone calorimeter test similar to nanodispersed LS, and somewhat better flame retardancy in flammability tests, such as LOI and UL 94. Adding APP to EP resulted in intumescent systems. The fire retardancy was particularly convincing when 15 wt % APP was used, especially for low external heat flux, and thus, also in flammability tests like LOI and UL 94. V0 classification is achieved when 15 wt % APP is used in EP. The flame retardancy efficiency of the protection layers formed does not increase linearly with the MB and APP concentrations used. The combination of LS with MB or APP shows antagonism; thus the performance of the combination of LS with MB or APP, respectively, was disappointing. No optimization of the carbonaceous‐inorganic surface layer occurred for LS‐MB. Combining LS with APP inhibited the intumescence, most probably through an increase in viscosity clearly above the value needed for intumescent behavior. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Melamine poly(metal phosphates) (MPMeP) are halogen‐free flame retardants commercialized under the brand name Safire. Melamine poly(aluminum phosphate) (MPAlP), melamine poly(zinc phosphate) (MPZnP), and melamine poly(magnesium phosphate) (MPMgP) were compared in an epoxy resin (EP). The thermal decomposition, flammability, burning behavior, and glass transition temperature were investigated using thermogravimetric analysis, pyrolysis combustion flow calorimeter, UL 94 testing, cone calorimeter, and differential scanning calorimetry. While the materials exhibited similarities in their pyrolysis, EP + MPZnP and EP + MPMgP showed better fire behavior than EP + MPAlP due to superior protective properties of the fire residues. Maintaining the 20 wt % loading, MPZnP was combined with various other flame retardants. A synergistic effect was evident for melamine polyphosphate (MPP), boehmite, and a derivative of 6H‐Dibenzo[c,e][1,2]oxaphosphinine‐6‐oxide. The best overall performance was observed for EP + (MPZnP + MPP) because of the best protection effectiveness of the fire residue. EP + (MPZnP + MPP) achieved V1/V0 in UL 94, and an 80% reduction in the peak heat release rate. This study evaluates the efficiency of MPMeP in EP, alone and in combination with other flame retardants. MPMeP is a suitable flame retardant for epoxy resin, depending on its kind and synergists. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43549.  相似文献   

6.
The synergistic effects of exfoliated layered double hydroxides (LDH) with some halogen‐free flame retardant (HFFR) additives, such as hyperfine magnesium hydroxide (HFMH), microencapsulated red phosphorus (MRP), and expandable graphite (EG), in the low‐density polyethylene/ethylene vinyl acetate copolymer/LDH (LDPE/EVA/LDH) nanocomposites have been studied by X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermal analysis (TGA and DTG), mechanical properties, limiting oxygen index (LOI), and UL‐94 tests. The XRD results show that EVA as an excellent compatilizer can promote the exfoliation of LDH and homogeneous dispersion of HFMH in the LDPE/EVA/HFMH/LDH nanocomposites prepared by melt‐intercalation method. The TEM images demonstrate that the exfoliated LDH layers can act as synergistic compatilizer and dispersant to make the HFMH particles dispersed homogeneously in the LDPE matrix. The results from the mechanical, LOI, and UL‐94 tests show that the exfoliated LDH layers can also act as the nano‐enhanced and flame retardant synergistic agents and thus increase the tensile strength, LOI values, and UL‐94 rating of the nanocomposites. The morphological structures of charred residues observed by SEM give the positive evidence that the compact charred layers formed from the LDPE/EVA/HFMH/LDH nanocomposites with the exfoliated LDH layers play an important role in the enhancement of flame retardant and mechanical properties. The TGA and DTG data show that the exfoliated LDH layers as excellent flame retardant synergist of MRP or EG can apparently increase the thermal degradation temperature and the charred residues after burning. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A novel flame retardant additive, aluminum ethylphenylphosphinate (AEPP), was synthesized from diethyl phenylphosphonite and aluminum chloride hexahydrate, and characterized by FTIR, 1H NMR, and 31P NMR. AEPP was added into diglycidyl ether of bisphenol A epoxy resin (EP) cured by bisphenol A‐formaldehyde novolac resin. The flame retardancy of the cured EP was investigated by limited oxygen index, UL 94 test, and cone calorimeter test. The results revealed that the EP composite containing 15% AEPP had a limited oxygen index value of 28.2% with a UL 94 V‐0 rating. The incorporation of AEPP effectively decreased the peak heat release rate and the total heat release in cone calorimeter test analysis. Scanning electron microscopy results showed that the introduction of AEPP benefited to the formation of a smooth and continuous char layer during combustion of the flame retarded EP. The thermogravimetric analysis results indicated that the incorporation of AEPP promoted the initial decomposition of EP matrix, but AEPP/EP composites had a higher char yield at high temperatures. Moreover, the flexural properties of the flame retarded EP composites were studied.  相似文献   

8.
Mg–Al–Fe ternary hydrotalcites were synthesized by a coprecipitation method and characterized with powder X‐ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The flame‐retardant effects of Mg/Al–CO3 layered double hydroxides (LDHs) and Mg/Al/Fe–CO3 LDHs in an ethylene/vinyl acetate copolymer (EVA) were studied with the limited oxygen index (LOI), the UL‐94 test, and the cone calorimeter test (CCT), and the thermal degradation behavior of the composites was examined by thermogravimetric analysis. The results showed that the LOI values of the EVA/(Mg/Al/Fe–CO3 LDH) composites were basically higher than those of the EVA/(Mg/Al–CO3 LDH) composites at the same additive level. In the UL‐94 test, there was no rating for the EVA/(Mg/Al–CO3 LDH) composite at the 50% additive level, and a dripping phenomenon occurred. However, the EVA/(Mg/Al/Fe–CO3 LDH) composites at the same loading level of LDHs containing a suitable amount of Fe3+ ion reached the V‐0 rating, the dripping phenomenon disappearing. The CCTs indicated that the heat release rate (HRR) of the EVA composites with Mg/Al/Fe–CO3 LDHs containing a suitable amount of Fe3+ decreased greatly in comparison with that of the composites with Mg/Al–CO3 LDHs. The introduction of a given amount of Fe3+ ion into Mg/Al–CO3 LDHs resulted in an increase in the LOI, a decrease in the HRR, and the achievement of the UL‐94 V‐0 rating. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Phytic acid–modified layered double hydroxide (Ph‐LDH) was synthesized via coprecipitation method and subsequently was used in polypropylene (PP) by combining with an ammonium polyphosphate (APP) via melt compounding method. The synergistic effect between APP and Ph‐LDH on the thermal stability, flammability, and mechanical properties of the resultant PP composites was investigated by thermogravimetric analysis, limiting oxygen index, vertical burning test (UL‐94), cone calorimeter tests, tensile test, and impact test. Morphologies of the chars obtained from the samples after the cone calorimeter tests were studied by scanning electron microscopy. The combination of APP and Ph‐LDH slightly influenced the impact and tensile properties of PP. Also, the synergistic effect between APP and Ph‐LDH occurred in the cone calorimeter test. Moreover, the combination of APP and Ph‐LDH produced better quality char that effectively suppressed the spread of the flame and volatile and finally extinguished the fire.  相似文献   

10.
Abstract

In this paper, nylon was used as carbonisation agent instead of pentaerythritol (PT), and the melt intercalation method was used to synthesise polypropylene (PP)/nylon (PA6)/montmorillonite (MMT) flame retardant nanocomposites. The structure and flammability property of products were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis (TGA), cone calorimeter test, limiting oxygen index and vertical burning test. The results showed that the polymer chain was intercalated into the MMT's interlayer and the MMT dispersed into PP/PA6 matrix in the form of intercalation to get flaky texture. The appropriate content of MMT in composition is 4–6 mass%. The use of intercalated MMT increased the tensile strength of materials by 15·0% and the impact strength by 69·5%, and improved the flame retardant properties. The TGA showed that the char residue rate reached 12·3%. The cone calorimeter experiments indicated that the peak of heat release rate reduced by about 87% in comparison with the pure PP and the residue weight increased. The vertical burning test (UL 94) results indicated that the materials achieved V-0 grade.  相似文献   

11.
Two kinds of polyvinyl chloride (PVC)/montmorillonite (MMT) nanocomposites were prepared by the melt intercalation method based on a thermally stable, rigid‐rod aromatic amine modifier and a commonly used 1‐hexadecylamine. The information on morphological structure of PVC/MMT nanocomposites was obtained using XRD and TEM. The mechanical, thermal, and flame retardant properties of the nanocomposites were characterized by universal tester, DMA, TGA, and cone calorimeter. The degree of degradation of PVC was studied by 1H‐NMR. MMT treated by the aromatic amine exhibited better dispersibility than that treated by 1‐hexadecylamine. The nanocomposites, based on this MMT, consequently exhibited better mechanical, thermal, and flame retardant properties and lower degradation degree than those based on 1‐hexadecylamine‐treated MMT. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 567–575, 2004  相似文献   

12.
A polymeric flame retardant (PDEPD) and various amounts of sodium montmorillonite (Na‐MMT) nanocomposites with exfoliation structure were prepared via one‐step polycondensation, attempting to prepare flame‐retardant nanocomposites. The nanocomposites exhibited high thermal stability at high temperature. Based on several comparative studies, we investigated and proposed the possible exfoliation mechanism of Na‐MMT in PDEPD substrate. The microscale combustion calorimeter and cone calorimeter results showed the PDEPD/Na‐MMT nanocomposites could significantly improve the flame retardancy of polystyrene and polyurethane elastomer (TPU), especially the TPU matrix. This study provides new viewpoint for preparing flame‐retardant nanocomposites without surfactants. POLYM. COMPOS., 35:167–173, 2014. © 2013 Society of Plastics Engineers  相似文献   

13.
以二苯基次磷酰氯和哌嗪为原料,成功合成了疏水性阻燃剂哌嗪-1,4-二烷基双(二苯基氧化膦)(PPDO),并将其添加到环氧树脂(EP)中,制备了阻燃EP复合材料。通过垂直燃烧、氧指数、热失重分析、锥形量热分析和力学性能测试对EP复合材料的阻燃性能、热分解行为、燃烧行为和力学性能进行了详细研究。结果表明,阻燃剂含量为17 %(质量分数,下同)时,EP/17 % PPDO复合材料通过了UL 94 V-0级测试,极限氧指数达28.9 %,耐水测试后,EP/PPDO复合材料仍保持着优异的阻燃效率;与此同时,PPDO与EP基体间出色的相容性,使复合材料具有良好的透明性和力学性能。此外,PPDO明显促进了EP基体提前降解成炭,使其在燃烧过程中,形成了致密且坚硬的膨胀炭层,有效降低了总热释放量,从而使EP/PPDO复合材料获得了良好的阻燃性能。  相似文献   

14.
In this article, the nanocomposites thermoplastic polyester‐ether elastomer (TPEE) with phosphorous–nitrogen (P–N) flame retardants and montmorillonite (MMT) was prepared by melt blending.The fire resistance of nanocomposites was analyzed by limiting oxygen index (LOI) and vertical burning (UL94) test. The result shows that the flame retardants containing P–N increased the LOI of the material from 17.3 to 27%. However, TPEE containing P–N flame retardants just got UL94 V‐2 ranking, which resulted in the flaming dripping phenomenon. On the other hand, TPEE containing P–N flame retardant and organic‐modified montmorillonite (o‐MMT) achieved UL94 V‐0 rating for the special microstructure. The XRD and TEM morphology has demonstrated that the formation of multi‐ordered structure regarding restricted segmental motions at the organic–inorganic interface and stronger interactions between the clay mineral layers and the polymer chains. The structure was supported by the results of rheological properties and DSC analysis. The thermal degradation and char residue characterization was studied by thermal gravimetric analysis (TGA) and SEM‐EDX measurements, respectively. The TGA and SEM‐EDX have demonstrated that o‐MMT results in the increase of char yield and the formation of the thermal stable carbonaceous char. POLYM. COMPOS., 37:700–708, 2016. © 2014 Society of Plastics Engineers  相似文献   

15.
In this article, a novel flame retardant (coded as BNP) was successfully synthesized through the addition reaction between triglycidyl isocyanurate, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and phenylboronic acid. BNP was blended with diglycidyl ether of bisphenol‐A to prepare flame‐retardant epoxy resin (EP). Thermal properties, flame retardancy, and combustion behavior of the cured EP were studied by thermogravimetric analysis, limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The results indicated that the flame retardancy and smoke suppressing properties of EP/BNP thermosets were significantly enhanced. The LOI value of EP/BNP‐3 thermoset was increased to 32.5% and the sample achieved UL94 V‐0 rating. Compared with the neat EP sample, the peak of heat release rate, average of heat release rate, total heat release, and total smoke production of EP/BNP thermosets were decreased by 58.2%–66.9%, 27.1%–37.9%, 25.8%–41.8%, and 21.3%–41.7%, respectively. The char yields of EP/BNP thermosets were increased by 46.8%–88.4%. The BNP decomposed to produce free radicals with quenching effect and enhanced the charring ability of EP matrix. The multifunctional groups of BNP with flame retardant effects in both gaseous and condensed phases were responsible for the excellent flame retardancy of the EP/BNP thermosets. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45291.  相似文献   

16.
Mg?CAl?CFe ternary layered double hydroxides (LDHs) were synthesized based on Bayer red mud by a calcination?Crehydration method, and characterized using powder X-ray diffraction and thermogravimetric analysis techniques. The synergistic flame-retardant effects of red phosphorus (RP) in ethylene vinyl acetate (EVA)/LDHs composites were studied with the limiting oxygen index (LOI), the UL 94 test, the cone calorimeter test (CCT), and the smoke density test (SDT). And, the thermal degradation behavior of the composites was examined by thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR) analysis. Results showed that the LOI values of the composites with RP were basically higher than those of the pure EVA sample and composites containing LDHs only. And the addition of a suitable amount of RP in EVA/LDHs/RP composites can apparently favor UL 94 test. In the UL 94 test there was a V-1 rating and dripping phenomena for the composites containing 50?% LDHs. However, the composites containing 47.5?% LDHs and 2.5?% red phosphorus did not drip. The CCT results indicated that the heat release rate (HRR) of the EVA/LDHs/RP composites with a suitable amount of RP decreased in comparison with that of the EVA/LDHs composites. The SDT showed that RP was helpful to smoke suppression. TG-FTIR data showed that the EVA/LDHs/RP composites show a higher thermal stability than the EVA/LDHs composites. A suitable amount of RP in EVA/LDHs/RP composites resulted in an increase in LOI values, a decrease in the HRR, the achievement of the UL 94 V-1 rating with no dripping phenomenon, a good smoke suppression character, and a high thermal stability.  相似文献   

17.
采用4种经过不同表面处理剂改性的有机层状硅酸盐(Clay)与膨胀型阻燃剂复配阻燃聚乳酸(PLA)。通过熔融共混的方法制备阻燃PLA纳米复合材料,并通过极限氧指数、垂直燃烧、锥形量热测试和热失重分析对材料阻燃性能和热稳定性进行了研究,通过扫描电子显微镜对残炭形貌进行了分析。结果表明,加入经硅氧烷表面处理的Clay的PLA具有最好的热稳定性和阻燃性能;与不加Clay的阻燃PLA复合材料相比,极限氧指数从30.6 %提高至34.2 %,并且通过垂直燃烧UL 94 V-0级别,热释放速率峰值从283 kW/m2下降至199 kW/m2,下降幅度为30 %;残炭形貌分析结果显示,加入硅氧烷表面处理之后的Clay能够使残炭更加完整致密,从而提高了材料的阻燃性能。  相似文献   

18.
Mg–Al–Fe ternary layered double hydroxides (LDH) were synthesized based on bayer red mud by calcination‐rehydration method, and characterized using X‐ray diffraction and thermogravimetric analysis (TGA). The synergistic flame retardant effects of ammonium polyphosphate (APP) with LDH in ethylene‐vinyl acetate (EVA) composites were studied using limiting oxygen index (LOI), UL 94 test, cone calorimeter test (CCT), and smoke density test (SDT). The thermal degradation behavior of EVA/LDH/APP composites was examined by thermal gravimetric analysis‐fourier transform infrared spectrometry (TG‐FTIR). The results showed that LOI values decreased by incorporation of APP together with LDH; and, a suitable amount of APP in EVA/LDH composites can apparently improve UL 94 rating. The CCT results indicated that heat release rate (HRR) of the EVA/LDH/APP composites with APP decreased in comparison with that of the EVA/LDH composites. The SDT results showed that APP was helpful to suppress smoke. The TG‐FTIR data showed that the composites with APP had a higher thermal stability than the EVA/LDH composites at high temperature. POLYM. ENG. SCI., 54:766–776, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Influence of independent Mg–Al‐layered double hydroxide (LDH), silicate modified expandable graphite (EG), mixture of LDH and EG at various ratios on ethylene vinyl acetate copolymer (EVA) combustion behavior and thermal stability was detected in sequence through the limiting oxygen index (LOI), vertical combustion (UL‐94) level, microscale combustion calorimeter (MCC) tests and thermal gravimetric/differential thermal gravimetric (TG/DTG) analysis. Results show that the 30 wt % LDH can improve the LOI of 70EVA/30LDH to 27.0%, but the combustion accompanies with serious melt‐dropping. While, the same amount of the EG can increase the LOI, UL‐94 level to 28.5%, V‐0 respectively. However, the combination of LDH and EG can further enhance the 70EVA/20LDH/10EG flame retardancy, it presents the LOI of 29.7%, UL‐94 level of V‐0, and total heat release of 29.5 kJ g?1. The excellent flame retardancy is attributed to its compact residue. Compared with residue mass, the residue compactness plays a more important role in improving flame retardancy. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44634.  相似文献   

20.
Summary Poly(butylene terephthalate) (PBT)/clay nanocomposites have been prepared by melt intercalation method directly from pristine montmorillonite (MMT), using cetyl pyridinium chloride (CPC) as the polymer/clay reactive compatibilizer. The effect of the reactive compatibilizer (CPC) proportion relative to the clay on the structure and properties of the PBT/clay nanocomposites was studied by XRD, TEM, TGA and cone calorimeter. The results show that such appropriate proportion as 1 wt % CPC to 3 wt % MMT induces well-dispersed intercalated morphology and better thermal and flame retarded properties. At last the intercalation mechanism of the technology was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号