首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mode I and mode II fracture behaviour under static and dynamic loading was analyzed in two composites made up of the same reinforcement though embedded in two different matrices. Specifically, the delamination energy under static and dynamic loading was obtained for both materials and both fracture modes, i.e. the number of cycles necessary for the onset of fatigue delamination. Subsequently, the crack growth rate (delamination rate) was obtained for different percentages of the critical energy rate. The main goal of the study was to ascertain the influence of the matrix on the behaviour of the laminate under fatigue loading.From the experimental results for the onset of delamination, similar fatigue behaviour was observed at a low number of cycles for both matrices and both fracture modes, while in fatigue at a high number of cycles, a higher fatigue limit was obtained in the composite with the modified resin (higher toughness) for both fracture modes. From the point of view of crack growth rate, both materials behaved similarly for different levels of stress under fatigue and the two fracture modes for small crack lengths (initial growth zone < 5 mm), although the growth rate increased for large crack lengths. This behaviour was the same in both loading modes.  相似文献   

2.
3.
Matrix cracking and edge delamination are two main damage modes in continuous-fibre composite laminates. They are often investigated separately, and so the interaction between two damage modes has not yet been revealed. In this paper, a simple parallel-spring model is introduced to model the longitudinal stiffness reduction due to matrix cracking and edge delamination together. The energy release rate of edge delamination eliminating the matrix crack effect and the energy release rate of matrix cracking in the presence of edge delamination are then obtained. Experimental materials include carbon- and glass-fibre-reinforced bismaleimide composite laminates under static tension. The growth of matrix cracks and edge delaminations was recorded by means of NDT techniques. Results show that matrix cracks may initiate before or after edge lamination. This depends on the laminate layup, and especially on the thickness of the 90° plies. Edge delamination may also induce matrix cracking. Matrix cracking has a significant effect on the stiffness reduction in GRP laminates. The present model can predict the stiffness reduction in a laminate containing both matrix cracks and edge delaminations. The mixed-mode delamination fracture toughness obtained from the present model shows up to 50% differences compared with O'Brien's model for GRP laminates. However, matrix cracking has a small effect on the mixed-mode interlaminar fracture toughness of the CFRP laminates.  相似文献   

4.
有横向纤维搭桥的脱层扩展稳定性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
本文利用von Karman 非线性薄板理论, 求解了复合材料中有横向纤维搭桥作用的圆形薄膜脱层的后屈曲问题, 获得了桥联脱层均匀扩展的能量释放率和断裂韧性。通过大量的计算和分析得到一个重要结论: 搭桥纤维的存在不仅对脱层的初始扩展起到了增韧作用, 而且避免了脱层扩展的灾难性。同时定量地给出了搭桥作用对脱层初始扩展的增韧程度, 并且确定了桥联脱层扩展稳定与不稳定的分区, 对不稳定脱层还给出了失稳扩展的范围及动态效应的估计。   相似文献   

5.
Quantitative determination of interlaminar fracture toughness that governs onset and growth of delamination is essential for engineering of composite materials and structures. This study proposes a new approach to evaluate both the initial fracture toughness and the crack growth resistance property of pure mode II delamination by tensile tests of specimens having two initial cracks, which were conceived from double-lap joints. The proposed test method achieves stable growth of mode II delamination using a fundamental testing system. This study presents the specimen configuration, the theory to evaluate the energy release rate, and experiment results. The mode II initial fracture toughness measured by the present approach agreed well with the results of conventional end-notched flexure tests. Furthermore, the crack growth resistance curves were evaluated by unloading-reloading tests of the proposed doubly end-notched tension specimens.  相似文献   

6.
Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high density) integration of dissimilar materials. Predictive finite element models require the input of interface properties, often determined with an interface delamination growth experiment with (nearly) constant process zone, relying on the assumption of no permanent deformation in the sample structure layers. However, much evidence in the literature exists that plasticity often does occur in the sample structure during delamination experiments, which should be adequately dealt with to obtain the real interface fracture toughness that is independent of the thickness of the two sample arms. This paper presents a practical approach for the separation of interfacial toughness and structural plasticity in a delamination growth experiment on a double-cantilever beam specimen involving only small-scale plasticity at the interface. The procedure does not require knowledge of the constitutive behavior of the adherent layers. It only deals with the separation of structural plasticity in the adherents, whereas small-scale plasticity in connection with ductile interface fracture is lumped into the interface fracture toughness. The proposed approach was numerically verified for one set of parameters. Experimental assessment of the approach on industrially-relevant copper lead frame–molding compound epoxy interface structures showed a correction of the interface fracture toughness of more than a factor of two, demonstrating the potentially significant errors induced by plastic deformation of the sample structure during delamination experiments.  相似文献   

7.
The hygrothermal effect on the fracture behavior of graphite/epoxy laminates has been investigated as part of an overall effort to develop a methodology for damage-tolerance predictions in advanced composite materials. Several T300/934 laminates were tested using a number of specimen configurations (double cantilever, compact tension, and cracked lap shear) in order to evaluate the effects of temperature and humidity on delamination fracture toughness under Mode I and Mode II loading. The specimens were exposed to different humidity levels and temperatures for varying periods of time prior to testing. The preexposed specimens were tested under room conditions, and fracture energies during initiation and propagation were estimated. Acoustic emission was used to detect crack initiation. It was indicated that moisture has a slightly beneficial influence on fracture toughness or critical strain energy release rate during Mode I delamination but a slightly deleterious effect on Mode II delamination and Mode I transverse cracking. The failed specimens were examined by scanning electron miscroscope (SEM) and topographical differences due to fracture modes were identified. The effect of moisture on fracture topography could not be distinguished.  相似文献   

8.
C. T. Sun  C. Han   《Composites Part B》2004,35(6-8):647-655
Static and dynamic Mode I delamination fracture in two polymeric fiber composites was studied using a WIF test method. The dynamic test was conducted on a Split Hopkinson Pressure Bar apparatus. Crack speeds up to 1000 m/s were achieved. Dynamic fracture and crack propagation were modeled by the finite element method. Dynamic initiation fracture toughness of S2/8552 and IM7/977-3 composites were obtained. The dynamic fracture toughness of IM7/977-3 associated with the high speed propagating crack was extracted from the finite element simulation based on the measured data. It was found that the dynamic fracture toughness of the delamination crack propagating at a speed up to 1000 m/s approximately equals the static fracture toughness.  相似文献   

9.
A modified end-notched flexure (ENF) specimen was used to determine Mode-II-dominated dynamic delamination fracture toughness of fiber composites at high crack propagation speeds. A strip of FM-73 adhesive film was placed at the tip of the interlaminar crack created during laminate lay-up. This adhesive film with its greater toughness delayed the onset of crack extension and produced crack propagation at high speeds. Dynamic delamination experiments were performed on these ENF specimens made of unidirectional S2/8553 glass/epoxy and AS4/3501-6 carbon/epoxy composites. Crack speed was measured by means of conductive aluminum lines created by the vapor deposition technique. A finite-element numerical simulation based on the measured crack speed history was performed and the dynamic energy release rate calculated. The results showed that the dynamic fracture toughness is basically equal to the static fracture toughness and is not significantly affected by crack speeds up to 1100 m/s.  相似文献   

10.
This paper provides a study on fatigue delamination growth in composite laminates using energy principles. Experimental data has been obtained from fatigue tests conducted on Double Cantilever Beam (DCB) specimens at various stress ratios. A concept of fatigue fracture toughness is proposed to interpret the stress ratio effect in crack growth. The fatigue fracture toughness is demonstrated to be interface configuration independent but significantly stress ratio dependent. An explanation for this phenomenon is given using SEM fractography. Fracture surface roughness is observed to be similar in different interfaces at the same stress ratio. But it is obviously more rough for high stress ratio in comparison with that for low stress ratio, causing the fatigue resistance increase. Therefore, the stress ratio effect in fatigue crack growth can be physically explained by a difference in resistance to crack growth.  相似文献   

11.
Composite materials are often subjected to mechanical impact causing delamination. For quasi-static loading, measuring the mode I fracture toughness has been standardized. However, for high-rate loading, additional challenges arise. Consequently, no standard test has yet been defined for measuring the mode I fracture toughness under high rates of loading. This article therefore reviews candidate tests for measuring the high-rate mode I fracture toughness. Strength and weaknesses of different specimen designs and test setups are shown. Different approaches to measuring crack growth and loads are presented. The different approaches are compared and recommendations are provided for measuring the mode I fracture toughness of composites under high rates of loading.  相似文献   

12.
缝合复合材料II型层间断裂特性研究   总被引:8,自引:5,他引:3       下载免费PDF全文
分别采用测量ENF试样加载点位移与测量其端部剪切位移CSD(Crack Shear Displacement)的试验方法,研究了缝合复合材料层合板的II型层间断裂韧性以及缝合密度,缝合线的直径等缝合参数对于缝合复合材料层合板II型层间断裂韧性和分层模式的影响。结果表明,缝合降低了层合板初始分层韧性GIIi,但对于分层的扩展有良好的抑制作用。缝合参数对此有较大影响。   相似文献   

13.
Variation in fibre volume fraction is a common characteristic of composites made by an injection moulding process. The effect of this variation on fracture toughness is not yet fully investigated. This paper examines the fracture in fabric carbon/epoxy composite laminates under a wide range of combined mode-I and mode-II delamination. A total of 60 double cantilever beam and edge-notched flexure specimens are manufactured by resin transfer moulding with two different fibre volume fractions. It was observed that increasing the fibre volume fraction decreased the initiation fracture toughness in all mixed-mode ratios. This behaviour is believed to relate to the fact that the initiation fracture energy is dominantly absorbed by the resin-rich regions at the delamination tip. In contrast, an increase in fibre volume fraction was found to increase the propagation fracture toughness at high mode-I contribution where the fibre bridging is believed to be the major energy dissipating mechanism. Fractographic analysis also demonstrated that an increase in contribution of mode-II delamination is accompanied by a decrease in fibre bridging and an increase in shear hackles.  相似文献   

14.
An investigation of the effects of moisture on mixed-mode I/II delamination growth in a carbon/epoxy composite is presented. Experimental quasi-static and fatigue delamination tests were carried out on composite specimens. The quasi-static fracture test results showed that exposure to moisture led to a decrease in mode II and mixed-mode delamination toughness while mode I toughness was enhanced. The fatigue tests revealed an adverse effect of moisture on delamination growth under mixed-mode loadings. Existing delamination criteria and growth rate models were evaluated to determine which ones best predict delamination toughness and growth, respectively, at any given mixed-mode ratio. Quasi-static and fatigue simulations with a cohesive zone-based finite element model that incorporated the selected mixed-mode delamination models were performed and good agreement between experimental and numerical data was shown for dry and moisture-exposed specimens.  相似文献   

15.
In the present paper the effects of stitching on the energy absorption and crashworthy behaviour of composite box structures will be studied. The combination of unidirectional carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) composite materials are used to laminate the composite boxes. Delamination study in Mode-I with the same lay-up was carried out to investigate the effect of stitching on delamination crack growth on energy absorption of stitched and non-stitched composite box structures. The double cantilever beam (DCB) standard test method was chosen for delamination studies. For non-stitched and stitched composite boxes the lamina bending and brittle fracture crushing modes were observed. It was found that the stitched composite boxes which show higher fracture toughness in Mode-I delamination tests, are not necessarily able to absorb more crushing energy in comparison with non-stitched composite boxes. It was also observed that the position of stitched area can affect the crushing mode and consequently energy absorption capability of composite box structures. The main reason can be related to other mechanisms such as bending, friction and bundle fracture which significantly contribute to energy absorption. The analytical model based on energy balance approach is proposed to estimate the mean crushing force, Fm, in axial crushing of square composite box.  相似文献   

16.
In this study, experimental methods and a theoretical model are developed with aim of understanding and predicting the onset of steam pressure-induced delamination. Experiments are performed by rapid heat-up of moisture saturated T650-35/HFPE-II-52 graphite/polyimide laminates, pre-implanted in the midplane with circular starter cracks. The deformation of these flaws and subsequent delamination growth is measured using custom designed, transverse extensometers. A theoretical model for calculation of internal steam pressure within a deforming circular cavity is derived and combined with a linear elastic fracture mechanics approach to predict the onset of delamination growth. The experimental results and theoretical calculations are used to highlight the effect of heating rate, initial flaw size, initial moisture content, and material toughness on steam-induced delamination. A parametric study is conducted and used to identify conditions required for transition between steam-induced delamination and steam-induced blistering damage.  相似文献   

17.
This paper presents an investigation into the effect of stitch density on the delamination toughening and self-healing properties of carbon–epoxy laminates. The stitches provide the laminate with the synergistic combination of high mode I interlaminar fracture toughness to resist delamination cracking and healing properties to repair delamination damage. The results show that the fracture toughness of the laminate increased with stitch density, due to higher traction (crack closure) loads exerted by the stitches bridging the delamination. During the healing process these bridging stitches first melt and then flow into the delamination, leading to self-healing with full restoration of the mode I fracture toughness. Furthermore, the stitches were capable of repairing delamination cracks many times larger than the original size of the stitches. The effect of stitch density on the healing process of delamination cracks and restoration of fracture toughness was found to remain approximately the same under multiple repair operations.  相似文献   

18.
本文采用双悬臂梁(DCB)试件研究了复合材料层合板层间插入韧性胶膜(Interleaf)层的Ⅰ型断裂行为。试验结果表明,含和不含Interleaf层试件分别呈现脆性非稳态和脆性稳态分层扩展特性。针对非稳定裂纹扩展问题,依据动态断裂力学中应变能释放率与动能变化率的关系,提出了以断裂韧性值GIC变化来抵消动能变化对裂纹扩展过程影响的准静态分析方法,根据试验中裂纹扩展的韧性变化,推导出适用于准静态裂纹扩展模拟的等效韧性GIC*,利用ABAQUS平台和虚裂纹闭合技术(VCCT)建立了三维有限元计算模型;实现了从起裂到止裂的整个裂纹动态扩展过程的数值模拟,揭示了非稳定裂纹扩展过程中一些复杂的力学现象。   相似文献   

19.
This paper presents an experimental study into a new type of stitched fibre–polymer laminate that combines high interlaminar toughness with self-healing repair of delamination damage. Poly(ethylene-co-methacrylic acid) (EMAA) filaments were stitched into carbon fibre/epoxy laminate to create a three-dimensional self-healing fibre system that also provides high fracture toughness. Double cantilever beam testing revealed that the stitched EMAA fibres increased the mode I interlaminar fracture toughness (by ∼120%) of the laminate, and this reduced the amount of delamination damage that must subsequently be repaired by the self-healing stitches. The 3D stitched network was effective in delivering self-healing EMAA material extracted from the stitches into the damaged region, and this resulted in high recovery in the delamination fracture toughness (∼150% compared to the original material). The new self-healing stitching method provides high toughness which resists delamination growth while also having the functionality to repeatedly repair multiple layers of damage in epoxy matrix laminates.  相似文献   

20.
Instrumented and Vickers indentation testing and microstructure analysis were used to investigate zirconia toughened alumina(ZTA) and silicon carbide(SiC).Several equations were studied to relate the Vickers indentation hardness,Young's modulus and crack behavior to the fracture toughness.The fracture in SiC is unstable and occurs primarily by cleavage leading to a relatively low toughness of 3 MPa m~(1/2),which may be inappropriate for multi-hit capability.ZTA absorbs energy by plastic deformation,pore collapse,crack deviation and crack bridging and exhibits time dependent creep.With a relatively high toughness around 6.6 MPa m~(1/2),ZTA is promising for multi-hit capability.The higher accuracy of mediar equations in calculating the indentation fracture toughness and the relatively high c/a ratios above 2.5suggest median type cracking for both SiC and ZTA.The Young's modulus of both ceramics was most accurately measured at lower indentation loads of about 0.5 kgf,while more accurate hardness and fracture toughness values were obtained at intermediate and at higher indentation loads beyond 5 kgf respectively.A strong indentation size effect(ISE) was observed in both materials.The load independent hardness of SiC is 2563 HV,putting it far above the standard armor hardness requirement of 1500 HV that is barely met by ZTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号