首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Y2O3 doped lead-free piezoelectric ceramics (Bi0.5Na0.5)0.94Ba0.06TiO3 (0-0.7 wt%) were synthesized by the conventional solid state reaction method, and the effect of Y2O3 addition on the structure and electrical properties was investigated. X-ray diffraction shows that Y2O3 diffuses into the lattice of (Bi0.5Na0.5)0.94Ba0.06TiO3 to form a solid solution with a pure perovskite structure. The temperature dependence of dielectric constant of Y2O3 doped samples under various frequencies indicates obvious relaxor characteristics different from typical relaxor ferroelectric and the mechanism of the relaxor behavior was discussed. The optimum piezoelectric properties of piezoelectric constant d33 = 137 pC/N and the electromechanical coupling factor kp = 0.30 are obtained at 0.5% and 0.1% Y2O3 addition, respectively.  相似文献   

2.
The addition of a small amount of CuO to the 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 (0.95NKN-0.05CT) ceramics sintered at 960 °C for 10 h produced a dense microstructure with large grains due to the liquid phase sintering. Due to the negligible Na2O evaporation, poling was easy for all specimens sintered at 960 °C. The piezoelectric properties of the specimens were considerably influenced by the relative density, grain size and liquid phase amount. The high piezoelectric properties of d33 = 200 pC/N, kp = 0.37, and Qm = 350 were obtained for the 0.95NKN-0.05CT ceramics containing 2.0 mol% CuO sintered at 960 °C for 10 h. Therefore, the 0.95NKN-0.05CT ceramics containing a small amount of CuO are a good candidate material for lead-free piezoelectric ceramics.  相似文献   

3.
The binary lead-free piezoelectric ceramics with the composition of (1 − x)Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3 were synthesized by conventional mixed-oxide method. The phase structure transformed from rhombohedral to tetragonal phase in the range of 0.16 ≤ x ≤ 0.20. The grain sizes varied with increasing the Bi0.5K0.5TiO3 content. Electrical properties of ceramics are significantly influenced by the Bi0.5K0.5TiO3 content. Two phase transitions at Tt (the temperature at which the phase transition from rhombohedral to tetragonal occurs) and Tc (the Curie temperature) were observed in all the ceramics. Adding Bi0.5K0.5TiO3 content caused the variations of Tt and Tc. A diffuse character was proved by the linear fitting of the modified Curie-Weiss law. Besides, the ceramics with homogeneous microstructure and excellent electrical properties were obtained at x = 0.18 and sintered at 1170 °C. The piezoelectric constant d33, the electromechanical coupling factor Kp and the dielectric constant ?r reached 144 pC/N, 0.29 and 893, respectively. The dissipation factor tan δ was 0.037.  相似文献   

4.
Lead-free piezoelectric ceramics (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 have been synthesized by traditional ceramics process without cold-isostatic pressing. The effect of the content of LiNbO3 and the sintering temperature on the phase structure, the microstructure and piezoelectric properties of (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics were investigated. The result shows that the phase structure transforms from the orthorhombic phase to tetragonal phase with the increase of the content of LiNbO3, and the orthorhombic and tetragonal phase co-exist in (K0.5Na0.5)NbO3-LiNbO3 ceramics when the content of LiNbO3 is about 0.06 mol. The sintering temperature of (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 decreases with the increase of the content of LiNbO3. The optimum composition for (1 − x)(K0.5Na0.5)NbO3-xLiNbO3 ceramics is 0.94(K0.5Na0.5)NbO3-0.06LiNbO3. The optimum sintering temperature of 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 ceramics is 1080 °C. Piezoelectric properties of 0.94 (K0.5Na0.5)NbO3-0.06LiNbO3 ceramics under the optimum sintering temperature are piezoelectric constant d33 of 215 pC/N, planar electromechanical coupling factor kp of 0.41, thickness electromechanical coupling factor kt of 0.48, the mechanical quality factor Qm of 80, the dielectric constant of 530 and the Curie temperature Tc = 450 °C, respectively. The results indicate that 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 piezoelectric ceramics is a promising candidate for lead-free piezoelectric ceramics.  相似文献   

5.
The effects of Mn addition on the structure, ferroelectric, and piezoelectric properties of the 0.35BiScO3-0.60PbTiO3-0.05Pb(Zn1/3Nb2/3)O3 ceramics were studied. The results demonstrate that the addition of small amounts of Mn did not cause a remarkable change in crystal structure, but resulted in an evident evolution in microstructure and ferro-piezoelctric properties. The addition of Mn can induce combinatory “hard” and “soft” piezoelectric characteristics due to aliovalent substitutions. The optimal electrical properties are obtained in the 0.25 mol% Mn-doped composition with a high Curie temperature, indicating that Mn doping contributes to the electrical properties of the ceramics. It can be expected that the improved piezoelectric material can be a promising candidate for high-temperature piezoelectric applications.  相似文献   

6.
Na0.5Bi0.5Cu3Ti4O12 (NBCTO) ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure and dielectric properties of NBCTO ceramics sintered at various temperatures with different soaking time were investigated. Pure NBCTO phase could be obtained with increasing the temperature and prolonging the soaking time. High dielectric permittivity (13,495) and low dielectric loss (0.031) could be obtained when the ceramics were sintered at 1000 °C for 7.5 h. The ceramics sintered at 1000 °C for 7.5 h also showed good temperature stability (−4.00 to −0.69%) over a large temperature range from −50 to 150 °C. Complex impedances results revealed that the grain was semiconducting and the grain boundaries was insulating. The grain resistance (Rg) was 12.10 Ω cm and the grain boundary resistance (Rgb) was 2.009 × 105 Ω cm when the ceramics were sintered at 1000 °C for 7.5 h.  相似文献   

7.
In an attempt to obtain dense lead metaniobate-based ceramics with improved dielectric and piezoelectric properties, the (Pb1.06−xBax)(Nb0.94Ti0.06)2O6 (x = 0, 0.04, 0.08, 0.12) piezoelectric ceramics were prepared separately from the two kinds of calcined powders, i.e., the powders with the rhombohedral phase and orthorhombic phase. For obtaining the calcined powders with the different phases, two different calcination temperatures of 900 °C and 1250 °C were chosen. The calcined powders were characterized using X-ray diffraction, scanning electron microscope, laser particle size analyzer and differential scanning calorimetry. Effects of the phase structures of the calcined powders on crystallite structure, microstructure, dielectric and piezoelectric properties of the ceramics were studied in detail. The lattice parameters and grain size of the ceramics are related to the phase structures of the calcined powders. The doping of Ba2+ has an influence on the dielectric and piezoelectric properties of the ceramics. The ceramics with x = 0.08 fabricated from the calcined powders with the orthorhombic phase demonstrate the optimum dielectric and piezoelectric properties.  相似文献   

8.
(1-x)(Na0.5K0.5)NbO3-xBaTiO3 ceramics were prepared by a solid state reaction approach, and their dielectric and ferroelectric properties were evaluated together with the crystal structure. Three phase transitions at Tt1, Tt2 and Tt3 were observed by the combination of DTA analysis and dielectric characterization. These phase transitions corresponded to those of (Na0.5K0.5)NbO3, and they were greatly pulled down by forming solid solution with BaTiO3. The phase transition around Tt1 was incompletely diffusive and the appearance of diffusiveness of non ferro-paraelectric phase transition was an exception. The hysteresis loops changed their shapes from “square” into “thin square” with increasing x.  相似文献   

9.
The ceramics with 0.90Pb(Zr0.50Ti0.50)O3-0.07Pb(Mn1/3Nb2/3)O3-0.03Pb(Ni1/2W1/2)O3 were prepared by adding Cr2O3. The effects of Cr2O3 doping on the phase structure, the microstructure and the electrical properties of ceramics were investigated. Meanwhile, the temperature stabilities of the resonant frequency (fr) and the electromechanical coupling factor (Kp) were studied. The results showed that the better temperature stability could be obtained at x = 0.2 wt.% when the calcining temperature was 800 °C and the sintering temperature was 1150 °C. The parameters were Δfr/fr25 °C = −0.17% and ΔKp/Kp25 °C = −1.39%. Moreover, the optimized electrical properties were also achieved, which were KP = 0.54, Qm = 1730, d33 = 330 pC/N, ?r = 2078 and tan δ = 0.0052. The optimized properties make the ceramics with this composition to be a good candidate for high power piezoelectric transformers applications.  相似文献   

10.
Co2O3 doped BaWO4-Ba0.5Sr0.5TiO3 composite ceramics, prepared by solid-state route, were characterized systematically, in terms of their phase compositions, microstructure and microwave dielectric properties. Doping of Co2O3 promoted grain growth, reduced Curie temperature and broadened phase-transition temperature range of BaWO4-Ba0.5Sr0.5TiO3, which were attributed mainly to the substitution of Co3+ for Ti4+ at B site in the perovskite lattice. Dielectric diffusion behaviors of the composite ceramics were discussed. The composite ceramics all had dielectric tunability of higher than 10% at 30 kV/cm and 10 kHz, with promising microwave dielectric properties. Specifically, the sample doped with 0.2 wt.% Co2O3 exhibited a tunability of 20%, permittivity of 225 and Q of 292 (at 1.986 GHz), making it a suitable candidate for applications in electrically tunable microwave devices.  相似文献   

11.
The (Na0.85K0.15)0.5Bi0.5TiO3 (BNKT) powders were synthesized by solid-state method, sol-gel method and stearic acid method. Microstructure, piezoelectric and dielectric properties of the ceramics were investigated. Attempts had been made to understand the reaction processes by using thermo gravimetric (TG) and differential scanning calorimetry (DSC). The BNKT powders have a perovskite structure with average crystallite sizes of 168 nm, 85 nm and 79 nm, corresponding to the solid-state method, the sol-gel method and the stearic acid method, respectively. The ceramics derived from the powder synthesized by sol-gel method presents the most homogeneous microstructure and largest grain size (5-7 μm). The effects of average crystallite size on microstructures and electric properties of the BNKT ceramics were investigated. Both the piezoelectric properties and dielectric properties were enhanced with the increase of grain size.  相似文献   

12.
(K0.5Bi0.5)TiO3-BiScO3-PbTiO3 ceramics were synthesized by conventional solid-state method. A morphotropic phase boundary (MPB) was confirmed with the aid of structural analysis. Two dielectric anomalous peaks were observed, the one around dielectric maximum temperature (Tm) due to phase transformation from ferroelectric to paraelectric while the second one could be ascribed to space charges. Furthermore, the existence of space charges also resulted in the independence of Tm with frequency at low lead composition. A new high temperature piezoelectric ceramic, 0.30(K0.5Bi0.5)TiO3-0.30BiScO3-0.40PbTiO3 close to MPB exhibited excellent electrical properties with Tm of 384 °C, d33 of 247 pC/N, kp of 38.9%, Pr of 19.41 μC/cm2, and Ec of 2.25 kV/mm, indicative of a candidate for high temperature application.  相似文献   

13.
The effect of CaO-SiO2-B2O3 (CSB) glass addition on the sintering temperature and dielectric properties of BaxSmyTi7O20 ceramics has been investigated using X-ray diffraction, scanning electron microscopy and differential thermal analysis. The CSB glass starts to melt at about 970 °C, and a small amount of CSB glass addition to BaxSmyTi7O20 ceramics can greatly decrease the sintering temperature from about 1350 to about 1260 °C, which is attributed to the formation of liquid phase. It is found that the dielectric properties of BaxSmyTi7O20 ceramics are dependent on the amount of CSB glass and the microstructures of sintered samples. The product with 5 wt% CSB glass sintered at 1260 °C is optimal in these samples based on the microstructure and the properties of sintering product, when the major phases of this material are BaSm2Ti4O12 and BaTi4O9. The material possesses excellent dielectric properties: ?r = 61, tan δ = 1.5 × 10−4 at 10 GHz, temperature coefficient of dielectric constant is −75 × 10−6 °C−1.  相似文献   

14.
Effects of Ca and Zr substitution upon the dielectric properties of Ba5LaTi3Ta7O30 ceramics were investigated together with the structural characterization. All the samples of Ba5La(ZrxTi1−x)3Ta7O30 formed a filled tungsten-bronze structures, whereas the solid solution limit was determined as x=0.25 in (CaxBa1−x)5LaTi3Ta7O30. Beyond this limit secondary phase of CaTa2O6 was detected and it would become the major phase for the Ca-rich compositions. The temperature coefficient of dielectric constant was improved with increasing Zr content while the dielectric constant decreased and the low dielectric loss varied little (in the order of 10−4). In the case of (CaxBa1−x)5LaTi3Ta7O30, small temperature coefficient of dielectric constant could be obtained with increasing Ca content while the dielectric constant decreased significantly, and a small amount substitution of Ca for Ba induced decrease in dielectric loss.  相似文献   

15.
Potassium-sodium niobate was synthesized at 800 °C for 1 h using dried precursors in a powder form obtained by the spray drying method. Different samples were sintered from 1060 to 1120 °C for 2 h reaching a relative density as high as 96% of the theoretical value. Piezoelectric and ferroelectric properties were studied for these samples and some of the most prominent results are: kp, d31, 2Pr, and 2EC of 0.36, 39 pC/N, 29 μC/cm2 and 16.5 kV/cm, respectively, for the sample sintered at 1080 °C. The methodology presented in this study can be used to synthesize submicrometer powders.  相似文献   

16.
(Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics added with 0–0.8 wt.% CeO2 were prepared by a citrate method, and the influence of the CeO2 addition on the structure and electrical properties was investigated. The specimens containing various amounts of CeO2 show the coexistence of rhombohedral and tetragonal phases, with the relative content of the tetragonal phases gradually enhancing with increasing amount of CeO2. Compared with (Na0.5Bi0.5)0.93Ba0.07TiO3, the specimen added with a small amount of CeO2 (≤0.2 wt.%) display a slightly improved electromechanical coupling factor (kp) and piezoelectric constant (d33) in conjunction with a reduced dielectric loss (tg δ) and an enhanced mechanical quality factor (Qm), while higher CeO2 amounts led to a rapid deterioration of the piezoelectric and ferroelectric properties. The variation of the electrical properties with the CeO2 addition was tentatively interpreted with respect to doping effect, crystal-structural evolution and stability of ferroelectric domains.  相似文献   

17.
The structure, ferroelectric characteristics and piezoelectric properties of (Na0.5Bi0.5)1 − xBaxTiO3 (x = 0.04, 0.06, 0.10) ceramics prepared by conventional solid state method were investigated. The influences of poling condition and sintering temperature on the piezoelectric properties of the ceramics were examined. The piezoelectric properties of the ceramics highly depend on poling field and temperature, while no remarkable effect of poling time on the piezoelectric properties was found in the range of 5-25 min. Compared with (Na0.5Bi0.5)0.96Ba0.04TiO3 and (Na0.5Bi0.5)0.90Ba0.10TiO3, the piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 are more sensitive to poling temperature due to the relatively low depolarization temperature. Moderate increase of sintering temperature improved the poling process and piezoelectric properties due to the development of microstructural densification and crystal structure. With respect to sintering behavior and piezoelectric properties, a sintering temperature range of 1130-1160 °C was ascertained for (Na0.5Bi0.5)0.90Ba0.10TiO3.  相似文献   

18.
We demonstrate the electrocaloric effect (ECE) of Na0.5Bi0.5TiO3–BaTiO3 (NBT–BT) lead-free ferroelectric ceramics, which were fabricated by the solid-state reaction method. Based on a Maxwell relation, the ECE was characterized via PT curves under different electric fields. The polarization of NBT increases monotonically within the temperature range of 25–145 °C. It indicates that the NBT has an abnormal ECE with a negative temperature change (ΔT140 = −0.33 K at E = 50 kV/cm) opposite to that of the normal ferroelectrics. The 0.92NBT–0.08BT composition near the morphotropic phase boundary has a normal ECE under low electric fields and an abnormal ECE under high electric fields. The abnormal ECE character originates from the relaxor characteristic between ferroelectric and antiferroelectric phases, while the common ECE is always related to the normal ferroelectric–paraelectric phase transition.  相似文献   

19.
(Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics added with 0–0.8 wt.% MnO were prepared by a citrate method, and the influence of the MnO addition on the structure and electrical properties was investigated. The results indicate that the addition of small amounts of MnO did not cause a remarkable change in crystal structure, but resulted in an evident evolution in microstructure. The dielectric constant (r) and piezoelectric constant (d33) significantly decrease with increasing MnO content, while the electromechanical coupling factor (kp) presents a slight variation in the range of 0.25–0.28. The dissipation factor (tan δ) and mechanical quality factor (Qm) attain a minimum value of 1.5% and a maximum value of 304 when adding 0.4 and 0.5 wt.% MnO, respectively. This research demonstrates that doping effect and microstructural evolution contribute cooperatively to the electrical properties of the ceramics.  相似文献   

20.
In this study, we tried to lower the sintering temperature of Ba0.6Sr0.4TiO3 (BST) ceramics by several kinds of adding methods of Bi2O3, CuO and CuBi2O4 additives. The effects of different adding methods on the microstructures and the dielectric properties of BST ceramics have been studied. In the all additive systems, the single addition of CuBi2O4 was the most effective way for lowering the sintering temperature of BST. When CuBi2O4 of 0.6 mol% was mixed with starting BST powders and sintered at 1100 °C, the derived ceramics demonstrated dense microstructure with a low dielectric constant (? = 4240), low dielectric loss (tan δ = 0.0058), high tunability (Tun = 38.3%) and high Q value (Q = 251). It was noteworthy that the sintering temperature was significantly lowered by 350 °C compared with no-additive system, and the derived ceramics maintained the excellent microwave dielectric properties corresponding to pure BST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号