首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用正交试验方法研究了挤压工艺对6061-T6铝合金棒材力学性能和粗晶环深度的影响。研究结果表明:挤压温度对抗拉强度、屈服强度、粗晶环深度的影响远大于挤压速度和挤压筒温的影响;抗拉强度和屈服强度随挤压温度的升高逐渐升高;粗晶环深度随挤压温度的变化,因是否主动添加Mn元素呈明显的相反趋势变化;过渡族元素Mn、Cr通过影响再结晶过程,影响粗晶环深度;通过有效的挤压温度、速度控制,完全可以使抗拉强度与屈服强度达标,同时粗晶环控制在3 mm以内。  相似文献   

2.
采用正交试验方法研究了固溶处理对6082铝合金棒材粗晶环深度和性能的影响。结果表明,固溶温度对粗晶环深度、抗拉强度和硬度的影响远大于保温时间和升温速率;粗晶环深度随着固溶温度的升高逐渐变深,棒材心部抗拉强度和硬度逐渐变大;挤压过程中铝合金组织的不均匀变形是制品在固溶处理过程产生粗大晶粒的主要原因,不均匀变形会导致基体晶粒晶界的界面能增加,晶核快速长大而形成粗晶环。通过对固溶工艺的优化可以将粗晶环深度控制在3.5 mm,抗拉强度395 MPa,棒材经碱洗之后直径减小量约为0.10~0.16 mm。  相似文献   

3.
通过金相分析、拉伸等分析测试方法,研究了化学成分和均匀化处理工艺对6061铝合金挤压棒材粗晶环和力学性能的影响。结果表明,通过优化铸棒化学成分和均匀化处理工艺,可将6061铝合金棒材外层粗晶环深度降低至0.1 mm,同时获得优良的力学性能。  相似文献   

4.
通过金相组织、力学性能、疲劳性能检测及透射电镜分析,研究了微合金元素对7N01-T4铝合金板材的组织和疲劳性能响。结果表明,低Zr、Cr含量的7N01-T4铝合金板材表层存在明显粗晶层,高Zr、Cr含量的板材没有粗晶层,且组织较均匀;自然时效30 d的低Zr、Cr含量的7N01-T4铝合金板材的抗拉强度比高Zr、Cr含量的约低30 N/mm~2,两种成分板材的纵向强度均高于横向强度10 N/mm2以上,伸长率则约低3%;低和高Zr、Cr含量的7N01-T4铝合金板材疲劳强度平均值分别为130 N/mm~2和142 N/mm~2;95%置信度、50%可靠度下的条件疲劳强度分别是124N/mm~2和135 N/mm~2;Zr和Cr元素显著影响合金的组织和综合性能。  相似文献   

5.
针对2A12铝合金棒材普遍存在的粗晶环问题进行研究。通过扫描电子显微镜和金相分析等分析测试方法,试验研究了化学成分和铸锭均匀化处理工艺对2A12铝合金挤压棒材粗晶环的影响。结果表明,通过优化化学成分和铸锭均匀化处理工艺,可将2A12铝合金挤压棒材粗晶环深度控制在1 mm以内。  相似文献   

6.
采用单辊熔体旋转冷却法,在400~500℃温度下进行热挤压,制得超细晶7075铝合金棒材;然后对其组织、力学性能以及拉伸断口等进行测试和分析。结果表明,采用快速凝固方法能显著地细化晶粒,制备的带材平均晶粒尺寸小于1μm。超细晶带材经热挤压得到的棒材与传统铸造热挤压棒材相比,晶粒得到了显著细化,力学性能更优。随着热挤压温度升高,棒材组织逐渐致密,虽然晶粒有所粗化,但强度和塑性仍有所提升;在挤压温度为500℃时,热挤压棒材获得最优的力学性能,其抗拉强度为517.1 MPa,断后伸长率为23.2%;与传统铸造热挤压相比,抗拉强度提高了12.0%,伸长率提高了51.6%。  相似文献   

7.
针对本公司生产的航空用7075铝合金挤压棒材,通过分析制品力学性能、金相组织、电导率等,研究不同厚度粗晶环对它的电导率和性能的影响。试验结果表明,通过宏观组织检验,粗晶环沿制品边缘,形成粗大再结晶晶粒区,粗晶环深度从尾端向头端逐渐减小,以致完全消失,粗晶环的存在一定程度上降低了力学性能;同时粗晶环的存在也一定程度上提高铝合金的电导率;提供一种合理的生产工艺,减少粗晶环缺陷挤压棒材的产生,为航空型材产品生产及工艺试验提供技术支持与指导。  相似文献   

8.
试验研究了Mg-6Zn-3Al-1Si镁合金通过等通道转角挤压(ECAP)后的微观组织和力学性能。结果表明:ZAM63-1Si镁合金ECAP后,α-Mg基体、汉字状的Mg_2Si相及层片状MgZn相得到有效细化,随着道次的增加,汉字状Mg_2Si逐渐破碎成颗粒状,并逐步相对均匀地分布在细化后的α-Mg基体中。等通道转角挤压后,该合金的力学性能显著提高。铸态合金屈服强度为41 N/mm~2,抗拉强度为62 N/mm~2,伸长率为1.35%。1道次挤压后合金的屈服强度提高到152 N/mm~2,抗拉强度提高到173 N/mm~2,伸长率提高到2%;4道次后屈服强度和抗拉强度分别提高到210 N/mm~2和240 N/mm~2,伸长率提高到6.5%。  相似文献   

9.
AZ31镁合金的热挤压组织与力学性能分析   总被引:1,自引:0,他引:1  
对常用变形镁合金AZ31进行了热挤压试验,制备出了四种规格的挤压材;观察了挤压前后镁合金的组织变化,并对挤压板材、棒材的力学性能进行了测试。研究结果表明:经过热挤压后,镁合金的晶粒得以细化,同时力学性能得到较大的提高,屈服强度达到200 N/mm2-270 N/mm2,抗拉强度达到300 N/mm2,伸长率在18%左右。  相似文献   

10.
在不同的挤压温度和挤压速度下制备了Mg5Sn1Mn镁合金,并进行了显微组织和力学性能的测试与分析。结果表明,随挤压温度从340℃提高到430℃或挤压速度从6 mm/s增加到15 mm/s时,Mg5Sn1Mn镁合金的晶粒先细化后粗化,合金的抗拉强度、屈服强度和断后伸长率均先增大后减小。优选的挤压温度为400℃、挤压速度为12mm/s。在该挤压工艺下Mg5Sn1Mn镁合金晶粒呈等轴晶分布,组织均匀,第二相颗粒状弥散分布在基体中,室温抗拉强度、屈服强度和断后伸长率分别为:358、262 MPa、21.8%。  相似文献   

11.
通过调整2618A铝合金的合金化元素、挤压温度、挤压速度等参数,试验研究2618A铝合金棒材粗晶环深度控制方法,以获得最优工艺参数,保证棒材粗晶环深度达到最小范围,满足产品用户和标准规定的要求。经过对比试验与分析,最终得到通过控制Ti与Zr元素含量以及采用低温、慢速挤压工艺达到控制粗晶环深度的方法。  相似文献   

12.
对7003铝合金挤压型材样品在试验室进行了固溶热处理工艺试验研究,在淬火后经双级时效处理,其抗拉强度、屈服强度和伸长率分别可达405 N/mm2、351 N/mm2和13%。在此基础上,在挤压生产线上进一步试验,研究了型材在线淬火工艺、停放时间及时效热处理等工艺参数对其力学性能的影响。经在线淬火,停放15 d及单、双级时效后,型材的抗拉强度、屈服强度和伸长率分别可达到407 N/mm2、353 N/mm2和15.5%及390 N/mm2、353 N/mm2和15.8%。  相似文献   

13.
采用硬度、拉伸力学性能测试和电子显微分析技术,研究了固溶-时效处理对6061铝合金挤压棒材组织与性能的影响。结果表明,6061铝合金挤压态组织除固溶体基体外,还包括亚微米级的Mg2Si平衡相、含Cr相和α-AlFe(Cr)Si夹杂相;固溶过程中,亚微米级的Mg2Si平衡相溶解而含Cr相及α-AlFe(Cr)Si夹杂相仍然保留下来;时效过程中,铝合金表现出明显的时效硬化效应,GP区的形成是合金强化的主要原因。6061铝合金棒材合适的固溶-时效制度为535℃50 min固溶、水淬后180℃6 h时效,在此条件下,合金棒材的抗拉强度、屈服强度和伸长率分别为339N/mm2、309 N/mm2和14.3%。  相似文献   

14.
将直径为80 mm的Mg-0.7Sm-0.3Zr合金铸锭分别在350、380和410℃下挤压成直径为16 mm的棒材。利用光学显微镜(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)技术、室温拉伸实验等研究了在不同温度挤压后Mg-0.7Sm-0.3Zr合金的显微组织、织构与力学性能。结果表明:铸态合金的组织主要为α-Mg基体,晶粒粗大,尺寸为20.7μm。经过挤压后晶粒明显细化,410℃挤压后平均晶粒尺寸为2.83μm,沿挤压方向出现很多细晶带交替分布。随着挤压温度的升高,再结晶分数逐渐增加,合金强度逐渐下降,断后伸长率逐渐增加。410℃挤压棒材的抗拉强度、屈服强度和断后伸长率分别为202 MPa、144 MPa和44.4%。  相似文献   

15.
采用不同挤压铸造工艺参数制备AZ80+0.15Ce镁合金机械轴筒,并进行了显微组织和力学性能的观察与测试。结果表明,随挤压压力从1 kN增大到2.5 kN、浇注温度从665℃提高至715℃、保压时间从10 s延长至30 s,轴筒的抗拉强度、屈服强度和冲击吸收功均先增大后减小。挤压力、浇注温度、保压时间分别优选为2.3 kN、700℃、20s;该最佳工艺参数下轴筒的抗拉强度、屈服强度、断后伸长率和冲击吸收功分别为394 N/mm~2、292 N/mm~2、10.2%、39.3 J。  相似文献   

16.
采用屑挤压法合成ZM6镁合金废屑和Mg-Ce中间合金屑制成棒材,研究Mg-Ce中间合金屑形状对合成镁合金棒的组织和性能影响,并讨论其断裂行为。结果表明:屑挤压后,Mg-Ce中间合金屑没有被打碎,合金棒材的力学性能较差。相比较而言,含w(Ce)=3.5%(屑状)的ZM6镁合金综合性能好一些,抗拉强度为180 N/mm2,伸长率为5.5%,试样的断裂方式为脆性断裂。  相似文献   

17.
采用不同的始锻温度、终锻温度对汽车用2A50-0. 5V-0. 3Sr新型铝合金试样进行了锻造成型,并对锻件的力学性能和热疲劳性能进行测试和分析。结果表明:480℃始锻温度、360℃终锻温度锻造的合金抗拉强度最高,断后伸长率、主裂纹平均长度和主裂纹平均宽度最小,力学性能和热疲劳性能最佳。与420℃始锻温度锻造相比,480℃始锻温度合金的抗拉强度增大了31 N/mm~2,主裂纹平均长度和主裂纹平均宽度分别减小了12μm、13μm,断后伸长率减小幅度较小;与320℃终锻温度合金相比,360℃终锻温度合金的抗拉强度增大了35 N/mm2,主裂纹平均长度和主裂纹平均宽度分别减小了15μm、14μm,断后伸长率减小幅度较小。汽车用2A50-0. 5V-0. 3Sr铝合金的锻造温度优选为:480℃始锻温度、360℃终锻温度。  相似文献   

18.
利用光学显微镜、扫描电子显微镜、X射线衍射分析仪和电子材料试验机分别研究了铸态和挤压态Mg-8Sn-4Zn-2Al合金的微观组织和力学性能。结果表明,铸态Mg-8Sn-4Zn-2Al合金主要由!-Mg相、在晶界处分布的网状共晶相(!-Mg+Mg2Sn)以及一些在晶内分布游离第二相颗粒(Mg32(Al,Zn)49)组成,平均二次枝晶间距为16.12μm,挤压(温度300℃,挤压速度0.1 mm/s,挤压比16)后,合金主要由动态再结晶晶粒和破碎的第二相形成的挤压条带组成,合金的平均晶粒尺寸为4.71μm。挤压态合金的屈服强度,抗拉强度和伸长率分别为196 N/mm~2,311 N/mm~2和18.3%。挤压态合金的强度提高是晶界强化、弥散强化和织构强化共同作用的结果。  相似文献   

19.
《铸造技术》2016,(6):1245-1248
对Mg-3Sn合金棒材的挤压工艺进行了数值模拟,通过改变挤压比、挤压温度和挤压速度的方法优化了挤压工艺,并在优化工艺参数下进行了Mg-3Sn合金棒材的挤压加工。结果表明,Mg-3Sn合金棒材的最佳挤压比为21,挤压温度为380℃,挤压速度为3 mm/s。优化工艺下的挤压棒材晶粒组织已经得到细化,且有变形挛晶和等轴晶产生,组织较为致密,未见孔洞、挤压变形层等缺陷,棒材的抗拉强度和屈服强度都有较大幅度的提高,而断后伸长率略有降低或者基本不变。Mg-3Sn合金棒材的挤压工艺数值模拟结果与试验结果较为一致。  相似文献   

20.
用户在对Φ170 mm 2A12-T352铝合金棒材进行机加工过程中,棒材表面沿纵向出现裂纹。通过对裂纹处进行宏观组织、微观组织、能谱断口形貌以及化学成分分析得知:裂纹是由于棒材在淬火时从高温急剧冷却,内部产生较大的淬火应力,棒材表层存在晶粒尺寸异常粗大的粗晶区,拉伸应力超过表层粗晶区的抗拉强度后产生开裂,该裂纹为淬火裂纹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号