共查询到20条相似文献,搜索用时 0 毫秒
2.
《轻金属》2021,(5)
本文对AZ31镁合金进行微弧氧化改性处理,来获得具有较高耐磨性的陶瓷涂层,旨在提高其耐磨性。在硅酸盐体系下引入稀土盐Er(NO_3)_3掺杂,研究Er(NO_3)_3掺杂量的变化对改性涂层相组成、微观结构、表面粗糙度、显微硬度以及摩擦因数的影响作用。结果表明:在硅酸盐电解液中未掺杂和掺杂Er(NO_3)_3后,镁合金涂层由MgO、MgSiO_3和Mg_2SiO_4等晶相组成,掺杂Er(NO_3)_3后涂层中MgSiO_3相含量略有增加。微弧氧化涂层具有"火山口状"的微孔结构。随着Er(NO_3)_3掺杂量增加,涂层表面的微孔数量呈现出先增后减的趋势。当Er(NO_3)_3掺杂量超过4.5‰时,微孔尺寸明显减小。当Er(NO_3)_3浓度过高时,涂层中某些区域出现少量腐蚀坑。掺杂Er(NO_3)_3的涂层,其显微硬度有所增加,增幅在11.6%~50.2%,摩擦因数略有降低。 相似文献
3.
针对镁合金耐磨性偏低的问题,利用微弧氧化技术在AZ31镁合金表面制备陶瓷涂层,探究微弧氧化电解液中添加La(NO_3)_3与Ce(NO_3)_3比例对AZ31镁合金微弧氧化(MAO)涂层显微硬度以及摩擦因数的影响。结果表明:AZ31镁合金微弧氧化涂层主要由MgO、MgSiO_3和MgSiO_4等相组成,未检测到原始添加的La和Ce等氧化物相。La(NO_3)_3与Ce(NO_3)_3添加能够降低镁合金涂层表面的微孔尺寸。随着电解液中La(NO_3)_3与Ce(NO_3)_3的添加比例增加,显微硬度呈现出先增加后降低的趋势。与未添加稀土复合盐相比,电解液添加稀土盐后微弧氧化涂层的显微硬度有所提高。添加La(NO_3)_3与Ce(NO_3)_3不同比例,涂层表面粗糙度在6.1~7.6μm范围内变化,相比未添加稀土盐获得涂层的粗糙度降低约2~3μm。电解液中添加La(NO_3)_3与Ce(NO_3)_3复合盐后,所获得的微弧氧化涂层的摩擦因数降低。 相似文献
4.
5.
6.
7.
TiO2纳米添加剂对6063铝合金微弧氧化陶瓷涂层性能的影响(英文) 总被引:1,自引:0,他引:1
通过在硅酸盐电解液中加入TiO2纳米添加剂,研究纳米添加剂浓度的变化对6063铝合金微弧氧化陶瓷涂层性能的影响。结果表明,纳米添加剂进入到陶瓷涂层中,而添加剂浓度的选取有一个较合理的范围。随着纳米添加剂的浓度增加到3.2g/L,涂层的结合力逐渐增大,平均摩擦因数和质量损耗逐渐减小。当浓度增加到4.0g/L时,涂层的结合力减弱,而平均摩擦因数增加,这与涂层显微硬度的测试结果一致。 相似文献
8.
7075铝合金微弧氧化涂层的组织结构与耐蚀耐磨性能 总被引:5,自引:0,他引:5
采用微弧氧化技术在7075铝合金表面制备保护性涂层,考察工艺参数对涂层生长过程的影响规律,利用SEM和XRD测试微弧氧化涂层的微观组织,通过中性盐雾实验评价涂层的耐腐蚀性能,通过摩擦磨损实验研究涂层的摩擦磨损特性.结果表明,电流密度和氧化时间是影响微弧氧化涂层质量和厚度的重要参数;γ-Al_2O_3是微弧氧化涂层的主要组成相,基体材料成分和电解液组分都会影响涂层的相组成;涂层厚度以及封孔处理对涂层的耐腐蚀性能具有显著影响,经适当工艺制备和处理的微弧氧化涂层耐中性盐雾实验时间可达2000h以上,耐蚀性优异;微弧氧化处理能够显著提高7075铝合金的耐磨性,与7075铝合金基体和硬质阳极氧化膜相比,微弧氧化涂层的耐磨性分别提高了约400倍和50倍. 相似文献
9.
针对生物医用镁合金耐蚀性差的问题,利用微弧氧化技术对ZA31镁合金进行表面改性处理,旨在获得抗腐蚀性优良的陶瓷涂层。在已优化的硅酸盐电解液体系和电化学参数条件下,对ZA31镁合金进行微弧氧化处理,研究电解液中Pr(NO_3)_3含量对微弧氧化涂层的相组成、微观结构、润湿角、表面粗糙度以及电化学性能的影响。研究结果表明:在电解液中添加Pr(NO_3)_3后获得的ZA31镁合金涂层主要由MgO、MgSiO_3和Mg_2SiO_4等晶相组成,未检测到Pr的氧化物相。未添加Pr(NO_3)_3时,涂层具有火山口状的微孔结构。随着Pr(NO_3)_3添加量增加,涂层表面的孔洞和火山状凸起减少,孔洞尺寸也明显减小,伴随出现大量表面平滑的区域,表面粗糙度降低。当Pr(NO_3)_3添加量不同时,涂层表面粗糙度在1. 8~2. 4μm范围内变化。在电解液中添加Pr(NO_3)_3后,涂层的极化曲线向正电位方向移动,涂层腐蚀电位正移,但幅度变化不大,腐蚀电流降低约为1~2个数量级,涂层的耐蚀性提高。 相似文献
10.
铝合金微弧氧化陶瓷膜层的应用主要取决于膜层表面质量,而影响表面质量的因素有很多。在恒压下采用固定的氧化工艺对不同表面粗糙度的7075铝合金进行微弧氧化处理,并通过粗糙度仪、测厚仪、划痕仪、高温摩擦磨损试验机、X射线衍射仪(XRD)和扫描电镜(SEM)研究了基体粗糙度对膜层表面质量的影响及形成机理。结果表明:在固定的微弧氧化工艺参数下,随着基体粗糙度的降低,膜层表面粗糙度和厚度及其分布随之下降,且下降趋势逐渐变缓并趋于稳定,而膜层结合力随之增强,但对耐磨性的影响不大。此外,对于基体粗糙度大的铝合金,微弧氧化处理能有效降低其膜层表面粗糙度,而对于基体粗糙度小的铝合金,微弧氧化处理反而增加了膜层表面粗糙度。 相似文献
11.
铝合金微弧氧化膜与基体界面区的硬度和弹性模量分布 总被引:10,自引:0,他引:10
用显微力学探针和维氏显微硬度计测定了LY12CZ铝合金微弧氧化膜与基体界面区的显微硬度H和弹性模量E分布,并分析了引起界两侧力学性能差异的原因,结果显示,界面两侧H和E值相差较大,因界面附近,H,E值从界面到膜内部是逐渐增加,界面附近铝合金基体上无明显硬化区,基体未发生重熔,而界面另一侧氧化膜则重熔过,氧化膜的硬度和弹性模量分布同膜的重熔有关。 相似文献
12.
LY12铝合金微弧氧化涂层组织结构对基体疲劳性能的影响 总被引:1,自引:0,他引:1
在硅酸盐体系电解液中于铝合金表面制备出不同厚度的微弧氧化涂层,研究涂层厚度对基体疲劳寿命的影响,并揭示疲劳损伤机制.采用XRD、SEM、EDS等分析手段分析涂层的物相与组织结构.用810 Material Test System 疲劳试验机评价涂层试样的疲劳寿命.结果表明,铝合金微弧氧化涂层主要由γ-Al_2O_3和a-Al_2O_3组成,涂层内层致密,表面多微孔.随氧化时间延长,涂层厚度增大,但表面粗糙度增加.疲劳测试结果表明,微弧氧化涂层会降低基底铝合金的疲劳寿命,涂层厚度增加,疲劳寿命下降显著.相对于基体铝合金,涂层厚度为10,18,30 mm的试样,疲劳寿命分别下降了4.4%,8.5%,32.2%.疲劳断口分析认为,涂层局部过度长入基体产生缺陷部位,在循环载荷作用下,容易产生应力集中,从而萌生疲劳源,使铝合金的疲劳寿命下降. 相似文献
13.
采用微弧氧化的方法在Ti-6Al-4V基体上制备稀土/磷酸钙生物复合涂层。研究了稀土在微弧氧化制备稀土/磷酸钙复合涂层中的作用及该涂层在模拟体液中的摩擦磨损性能。与单一涂层相比,稀土盐的添加有效提高了涂层的厚度;经模拟体液浸泡后的涂层结合强度以及涂层在模拟体液中的摩擦磨损性能都明显提高。SEM观察表明,该复合涂层的表面多孔形貌分布更为均匀;XRD分析显示,稀土盐的添加并没有改变涂层的磷酸钙相生成。 相似文献
14.
以飞机架构用7075合金为研究对象,通过正交试验法优化了7075合金在NaAlO2、Na2SiO3、Na2B4O7和Na3PO4四个电解液体系下的微弧氧化工艺参数最佳方案,并对微弧氧化膜层的厚度、硬度、表面形貌和截面形貌进行了表征。结果表明,7075合金微弧氧化的四种电解液的最佳配方为:NaAlO2浓度为9 g/L、Na2SiO3浓度为8 g/L、Na2B4O7浓度为15 g/L、Na3PO4浓度为12 g/L,NaOH和三乙醇胺浓度分别为1 g/L和3 g/L;四种优化电解体系的微弧氧化陶瓷膜层的显微硬度的最大值出现在NaAlO2体系(1091 HV0.1),而陶瓷膜层的最小值出现在Na3PO4体系(553 HV0.1)。 相似文献
15.
在铝酸盐、磷酸盐和硅酸盐3种电解液体系中,利用微弧氧化技术在6061铝合金表面原位生长陶瓷膜,通过SEM、XRD、EDS及显微硬度计对陶瓷膜层的微观结构、相组成、元素分布及显微硬度进行分析。结果表明:3种陶瓷膜均为疏松层和致密层组成的双层结构,膜层表面存在许多微孔;陶瓷膜均由α-Al2O3和γ-Al2O3组成,γ-Al2O3衍射峰强度高于α-Al2O3在磷酸盐和硅酸盐体系中,微弧氧化陶瓷膜表面分别含有P和Si元素,表明电解液中的离子参与成膜过程;在铝酸盐中制备的陶瓷膜显微硬度优于其它2种体系,可达到16350MPa,比6061铝合金硬度提高了10倍。 相似文献
16.
目的研究电流密度对陶瓷膜层厚度、硬度及耐磨、耐腐蚀性能的影响。方法在含有氢氧化钠和硅酸钠的电解液中添加石墨烯纳米片(GNPs),采用脉冲直流模式实现不同电流密度条件下2024铝合金的微弧氧化(MAO)处理。采用扫描电镜(SEM)和能谱仪(EDS)对膜层形貌和成分进行了分析,借助电化学极化曲线测试了膜层的耐腐蚀性能,使用X射线衍射仪(XRD)表征了试样的相组成,利用多功能材料表面性能试验机测定了陶瓷膜表面力学性能。结果电流密度从1 A/dm~2增加到5 A/dm~2时,含GNPs的陶瓷膜层厚度由4.2μm增加到5.8μm,不含GNPs的膜层厚度由2.7μm增加到4.5μm。电流密度为1 A/dm~2时,含GNPs的膜层硬度达到163 HV,比同电流密度下不含GNPs的膜层硬度提高63%。电流密度为1 A/dm~2时,摩擦系数约为0.5;电流密度达到5 A/dm~2时,摩擦系数降低为0.3,膜层的耐磨性能提高。电流密度为3 A/dm~2时,自腐蚀电位开始逐渐升高,而自腐蚀电流呈下降趋势,生成的陶瓷膜的耐蚀性最好。电流密度对陶瓷膜成分的影响不明显。结论试样致密层的摩擦系数随电流密度的增大而显著降低,耐磨性能提高。提高电流密度可有效减少膜层上放电孔洞的数量和尺寸,改善膜层的耐蚀性,电流密度达到3 A/dm~2时,膜层的耐蚀性能最佳。引入GNPs可提高膜层的厚度、硬度、耐磨性能、耐腐蚀性能。 相似文献
17.
硅酸盐电解液中铝合金微弧氧化陶瓷膜层的结构与性能 总被引:11,自引:0,他引:11
在硅酸盐电解液中利用微弧氧化方法,在LYl2铝合金上制备了陶瓷膜层。用扫描电镜(SEM)和X射线衍射仪(XRD)观察分析了其形貌和相组成,测定了膜层厚度、显微硬度,并对涂层进行了耐蚀性和抗热震性研究。结果表明,涂层分为两层,外层为疏松层,内层为致密层,涂层总厚度76μm,致密层厚度50μm,硬度1500HV;涂层相组成为γ-Al2O3和α-Al2O3;涂层在30℃、10%NaOH水溶液和30℃、20%Nacl水溶液中的耐蚀性极好。 相似文献
18.
19.
20.
LY12铝合金微弧氧化陶瓷膜的纳米压入研究 总被引:11,自引:0,他引:11
用纳米压入法测定了LY12铝合金微弧氧化陶瓷膜的硬度H和弹性模量E分布,并探讨了陶瓷氧化膜的生长机理。氧化膜的硬度和弹性模量分别为18GPa-32GPa,280GPa-390GPa。靠近膜/基体界面的氧化膜硬度和弹性模量仍然相当高。H和E沿膜深度的分布都存在一个极大值,并同膜内α-Al2O3含量变化是一致的。其形成原因在于微弧区熔融物在膜不同部位冷却速率差异较大。 相似文献