首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
采用金相显微镜、扫描电镜和能谱分析,研究Sc细化Al-Zn-Mg-Cu-Zr合金铸态组织的机制和一次Al3(Sc, Zr)粒子的形貌特征。结果表明:从熔体中析出的Al3(Sc, Zr)一次粒子是α(Al)固溶体的有效形核剂,该粒子以亚稳的L12型Al3Zr为核心,形成富钪与富锆Al3(Sc, Zr)层相间排列的多层复合结构。在Al-9.0Zn-2.5Mg-2.5Cu-0.15Zr合金中添加0.20%~0.60%(质量分数)的钪,合金的铸态组织由粗大的树枝晶变为等轴晶,随着钪含量的增加,合金铸态组织得到进一步细化。  相似文献   

2.
采用金相显微镜、扫描电镜和能谱分析,研究Sc细化Al-Zn-Mg-Cu-Zr合金铸态组织的机制和一次Al3(Sc,Zr)粒子的形貌特征。结果表明:从熔体中析出的Al3(Sc,Zr)一次粒子是α(Al)固溶体的有效形核剂,该粒子以亚稳的L12型Al3Zr为核心,形成富钪与富锆Al3(Sc,Zr)层相间排列的多层复合结构。在Al-9.0Zn-2.5Mg-2.5Cu-0.15Zr合金中添加0.20%~0.60%(质量分数)的钪,合金的铸态组织由粗大的树枝晶变为等轴晶,随着钪含量的增加,合金铸态组织得到进一步细化。  相似文献   

3.
《铸造技术》2019,(12):1249-1252
研究了Sc含量对铸态AlMg5Si2Mn合金的显微组织,力学性能和断裂特征的影响。结果表明,添加适量的Sc对AlMg5Si2Mn合金中的初生α-Al和共晶Mg_2Si具有显著的变质效果。随着Sc含量从0增加到0.25%,初生α-Al形貌由较大的块状转变为细小的球状,共晶Mg_2Si的形貌由汉字状转变为纤维状或点状。Sc在合金中形成Al_3Sc相,作为异质形核基底促进初生α-Al形核,并晶粒细化。Sc原子富集在共晶Mg_2Si相的生长前沿形成成分过冷,Mg_2Si相的生长被抑制。Sc的添加可以提高合金的抗拉强度和伸长率,与未变质合金相比,添加0.15%~0.25%Sc的合金拉伸性能最佳,抗拉强度和伸长率分别提高了20.9%和60.4%。  相似文献   

4.
研究了Sc元素微合金化对Al-Si-Cu-Ni-Mg系活塞铝合金组织及高温蠕变性能的影响。结果表明:Sc元素在共晶型Al-Si合金中有两种存在形式,一种在初生硅周围形成了一种片状富Sc相,为Sc_2Ni_7相。另一种存在于Al3CuNi相中,形成Al_3(CuNiSc)相,T6热处理后Al_3(CuNiSc)相出现分解粒化的现象,其附近的基体中出现了大量的颗粒状Al_2Cu相。加Sc合金铸态组织中的α-Al与初生硅尺寸都有不同程度的减小,其中二次枝晶间距相比基体合金减小了24.80%,初生硅的尺寸缩小了16.86%。添加0.2%Sc元素后,合金抗蠕变性能明显提高。  相似文献   

5.
采用金相显微镜、差示扫描量热仪、扫描电镜及其能谱仪研究了Al-5.4Zn-2.0Mg-0.3Mn-0.25Cu-0.1Zr和Al-5.4Zn-2.0Mg-0.3Mn-0.35Cu-0.1Zr-0.25Sc两种合金的铸态及均匀化态显微组织演变与成分分布.结果表明:铸态组织以典型的枝晶结构存在,由过饱和的α-Al固溶体和α-Al+η-MgZn2的非平衡共晶相组成;铸态合金在470℃保温24 h,非平衡共晶相消失,合金枝晶偏析消除.确定合金铸锭的理想均匀化工艺参数为470℃×24 h.  相似文献   

6.
借助金相显微镜、扫描电镜、透射电镜、布氏硬度计和万能试验机,试验研究了Sc对Al-3.0Si-0.45Mg-0.45Cu-0.15Ti合金铸态组织和力学性能的影响。结果表明,在试验合金中添加稀土元素Sc,使合金在凝固过程中析出Al3(Sc,Ti)初生相,初生相与α(Al)基体共格,符合点阵匹配原理,成为有效的非均质晶核,可显著细化合金的铸态组织。随着Sc含量(w(Sc)0~0.56%)的增加,合金的铸态组织由粗大的树枝晶变为细小的等轴晶,合金的硬度、抗拉强度和伸长率也随着Sc含量的增加而升高。时效过程中析出的Al3(Sc,Ti)沉淀相密度高,细小弥散,具有钉扎位错,稳定亚结构,阻碍亚晶长大及晶界迁移的作用。  相似文献   

7.
Sc对Al-Zn-Mg-Cu-Zr合金铸态组织和力学性能的影响   总被引:3,自引:0,他引:3  
采用金相显微镜、扫描电镜和能谱分析,研究Sc对Al-9.0Zn-2.5Mg-2.5Cu-0.15Zr合金铸态组织和力学性能的影响。结果表明,添加0.20%-0.60%的Sc,会使合金的铸态组织由粗大的树枝晶变为等轴晶,并使Cu的偏聚减轻,且Sc含量越高,合金铸态组织越细,Sc含量为0.60%的合金铸态组织最细小;随着Sc含量的增加,合金的抗拉强度升高,T6态时,Sc含量为0.60%的合金抗拉强度高达783.9 MPa。从熔体中析出的Al3(Sc,Zr)一次粒子具有与α(Al)基体相同的FCC晶格,晶格常数接近,可有效地细化合金的铸态组织。合金强化机理主要为Al3(Sc,Zr)引起的细晶强化、亚结构强化和沉淀强化。  相似文献   

8.
Sc、Zr复合添加到Al-4Fe合金中,改变了合金铸态晶粒的形态。变质剂在合金凝固过程中提供优质的异质形核核心,有效地细化铝基体晶粒;Sc、Zr在初生Al3Fe相周围的富集在一定程度上阻碍了Fe原子在结晶前沿的扩散,抑制了初生Al3Fe相的生长,起到了细化初生相的作用。当加入0.3%的Sc和0.2%的Zr时,合金组织的细化效果相对较好,初生Al3Fe相转变为针状、粒状和花朵状,合金的抗拉强度得到提高。探讨了微量Sc、Zr复合添加对过共晶铝铁合金的细化作用机理。  相似文献   

9.
对复合添加了稀土元素Sc、Zr的Al-Zn-Mg合金采用光学显微镜(OM)、电子探针(EPMA)、差热分析(DSC)等分析和测试方法,探究不同含量的Sc、Zr添加量对Al-Zn-Mg合金铸态组织演变的影响。结果表明,稀土元素Sc、Zr的复合添加对铸态晶粒产生了细化效果,铸态合金元素大多数偏聚在晶界或者晶内,随着Sc、Zr的含量增加,元素分布趋于均匀,第二相数目开始减少,晶粒大小也逐渐减少。470℃×24 h均匀化退火之后,枝晶组织得到消除,大部分非平衡T相也溶入基体,只有少量难溶的Fe、Si杂质相残留在晶界上,同时合金中重新析出小尺寸的MgZn_2相。随着Sc、Zr含量的增加,第二相的回溶和晶粒细化效果得到了提高。  相似文献   

10.
采用冶金法制备了四种不同Sc、Zr添加量的Al-6Mg-0.6Mn合金铸锭,利用金相显微镜、SEM及EBSD等手段研究了Sc、Zr添加量对合金铸态组织的影响。结果表明:在Al-6Mg-0.6Mn合金中添加w(Sc)=0.15%和w(Zr)=0.10%的Sc、Zr即可消除铸态枝晶网,获得明显细化的铸态组织;熔铸中粗大的Al3(ScZr)粒子不能起到细化晶粒的作用,反而恶化合金组织,进而对力学性能产生不利影响,应该严格加以控制。  相似文献   

11.
通过力学性能测试、X射线衍射、扫描电镜及能谱分析等手段,研究了复合添加稀土元素Sc、Zr对Zn-43Al- 1.6Cu合金铸态显微组织及力学性能的影响.研究发现:在铸态Zn-43Al-1.6Cu合金中复合添加0.4%Sc、0.1%Zr时,合金显微组织细化效果较好,粗大的树枝晶转变为均匀、细小的团絮状组织,合金的抗拉强度达到372.3 MPa,伸长率提高了45.1%;稀土元素Sc、Zr与Zn-43Al- 1.6Cu合金中的Al形成了与α-Al基体晶格类型和晶胞尺寸都极为相近的复杂化合物Al3Sc粒子,促进异质形核,起到细晶强化的作用,从而提高了合金的力学性能.  相似文献   

12.
对比研究了微量稀土元素Y、Sc对A356合金铸态显微组织和力学性能的影响。结果表明,0.3%的Y、0.3%的Sc均能明显减小合金中α-Al枝晶间距,细化α-Al晶粒,使片状共晶Si部分纤维化,但对Si变质效果均不如Sr。等量Y和Sc细化变质效果相比,Y的细化效果不如Sc,但Sc对共晶Si的变质效果不如Y;与之相对应,Y提高A356合金铸态力学性能的幅度优于等量Sc。  相似文献   

13.
用金相显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)及显微硬度仪研究了Sc含量对Al-5.5Mg-0.5Mn-XSc-0.1Zr (质量分数,%) (0.05≤X≤0.50)合金铸态显微组织和时效处理后二次析出相的形貌及其强化作用的影响。结果表明:当Sc含量少于0.09%(质量分数,下同)时,凝固过程中无含Sc相析出,铸锭组织为柱状树枝晶,时效后强化作用有限;当Sc含量在0.16%~0.23%时,凝固过程中析出少量初生及共晶Al3(Sc, Zr)相,这既能够细化晶粒,又不影响时效后二次析出相的热稳定性,时效后合金的硬度也较高;而Sc含量过高(X≥0.23)时,合金中初生和共晶Al3(Sc, Zr)相的含量增多,虽然也能够细化晶粒,但凝固后基体中固溶的Zr含量也会随之降低,导致二次Al3(Sc, Zr)相的热稳定性降低,450 ℃时效24 h后二次析出相粗化严重,强化作用很弱  相似文献   

14.
在7055合金成分基础上添加0.14%的Zr及0.15%的Sc,获得7055-0.14Zr-0.15Sc合金。对比该合金与7055合金的铸造、均匀化、轧制及T6态的微观组织与力学性能。研究发现,由Zr、Sc添加所形成的初生Al_3(Sc,Zr)相在铸造过程中起到促进非均质形核、细化合金组织的作用。均匀化热处理促使纳米Al_3(Sc,Zr)相析出,该相在热变形及固溶时效处理过程中起到钉扎晶界的作用,进而显著地抑制了晶粒粗化。因此,与7055合金相比,7055-0.14Zr-0.15Sc合金具有更高的强度及塑性。  相似文献   

15.
微量钪对Al-Cu-Li-Mg-Zr合金组织与性能的影响   总被引:1,自引:0,他引:1  
通过显微组织观察和室温拉伸试验,研究了微量Sc对Al-Cu-Li-Mg-Zr合金组织和拉伸性能的影响。结果表明,在Al-Cu-Li-Mg-Zr合金中加入微量Sc,可消除铸态枝晶组织并显著细化铸态晶粒、有效抑制再结晶,明显提高了合金的强度和塑性。微量Sc引起的强化来源于晶粒细化、次生的Al3(Sc,Zr)相析出和亚结构强化。  相似文献   

16.
采用光学显微镜(OM)、透射电镜(TEM)、X射线衍射(XRD)和拉伸试验机等研究了Zr含量对2524铝合金显微组织及力学性能的影响。结果表明:添加Zr元素能够明显细化铸态2524铝合金的晶粒。铸态合金存在明显的枝晶偏析,经过均匀化退火处理后,非平衡低熔点相基本溶入基体,晶间组织分布趋于均匀。大应变轧制变形后,2524铝合金中均得到了典型的纤维状组织,合金中的第二相主要为S(Al_2CuMg)相,θ(Al_2Cu)相、T(Al_(20)Cu_2Mn_3)相和Al_3Zr相,并沿晶界呈连续分布。经时效处理后,形成大量弥散的Al_3Zr粒子,对位错和亚晶界具有强烈的钉扎作用,能明显提高合金的抗再结晶能力和室温力学性能。随着Zr含量的增加合金力学性能呈现递增趋势,当Zr含量为0.5 mass%时,2524铝合金的抗拉强度、屈服强度和伸长率分别为645 MPa、548 MPa和11%。  相似文献   

17.
采用布氏硬度计、金相显微镜、扫描电镜(SEM)和透射电镜(TEM)研究了微量Sc、Zr、Ti以及Mg含量对Al-Mg合金的显微组织与布氏硬度的影响。结果表明,单独添加Sc、Zr元素的合金与未添加的Al-Mg合金的铸态组织相比,合金的晶粒组织得到了一定的细化,复合添加Sc、Zr、Ti3种元素的合金铸态组织的晶粒细化程度更为明显。同时在Sc、Zr、Ti相同含量下,Mg元素的增加也能进一步细化合金的晶粒组织,这是由于Mg元素固溶强化的结果,使得合金的布氏硬度提高。对Al-10Mg-Sc-Zr-Ti合金进行均匀化退火处理后,合金的硬度较铸态组织提高了10%,这是Al3(Sc1-xZrx)、Al3(Sc1-xTix)及Al3(Sc1-x-yZrxTiy)大量沉淀相二次析出,弥散度增大、分布更加均匀的结果。  相似文献   

18.
《铸造》2015,(8)
运用固体经验电子理论,对复合添加微量Sc和Zr的Al-Fe合金的价电子结构进行计算,从电子层次的微观合金偏聚理论分析微量元素对铸态Al-Fe合金的晶粒细化作用。结果表明:Sc、Zr原子和Al原子有更强烈的交互作用,在合金熔体中形成Al-Sc、Al-Zr和Al-Sc-Zr偏聚区,析出大量细小弥散的Al3Sc、Al3Zr和Al3(ZrxSc1-x)粒子,作为非均质形核核心,对Al基体晶粒和初生Al3Fe相晶粒起到强烈的晶粒细化作用。  相似文献   

19.
添加微量Sc、Zr对超高强铝合金微观结构和性能的影响   总被引:1,自引:0,他引:1  
采用低频电磁铸造技术制备Al-9Zn-2.8Mg-2.5Cu-x Zr-y Sc(x=0,0.15%,0.15%;y=0,0.05%,0.15%)合金,借助金相显微镜、扫描电镜、透射电镜、力学性能测试等手段分别对其均匀化、热挤压态、固溶态和时效态的组织与性能进行对比分析。结果表明:添加微量Sc和Zr,会在凝固过程中形成初生Al3(Sc,Zr),可显著细化合金铸态晶粒;均匀化时形成的次生Al3(Sc,Zr)粒子可以强烈钉扎位错和亚晶界,有效抑制变形组织的再结晶,显著提高合金的力学性能。与不含Sc、Zr的合金相比,含0.05%Sc和0.15%Zr的合金经固溶处理和峰值时效处理后其抗拉强度和屈服强度分别提高172 MPa和218 MPa,其强化作用主要来自含Sc、Zr化合物对合金起到的亚结构强化、析出强化和细晶强化。  相似文献   

20.
采用砂型铸造、金属型铸造和压铸制备了Al-5.0Mg-0.6Mn-0.25Ce合金,研究了不同铸造方法(冷却速率)对合金组织和力学性能的影响。结果表明,随着冷却速率增加,铸态合金中的α-Al枝晶发生等轴化,粗大的第二相发生细化。低冷却速率时,砂型铸造、金属型铸造合金的铸态组织主要由α-Al枝晶和分布在周围的Al_3Mg_2相、Al_6(Fe,Mn)相、Mg_2Si相等第二相组成;高冷却速率时,压铸合金则由α-Al等轴晶和分布在其周围的短棒状含Mn相、针状Mg_2Si相组成。随着冷却速率增加,铸态合金的屈服强度、抗拉强度逐渐增加,而伸长率则呈现先增后减的趋势,这主要是与合金显微组织和内部气孔、缩孔等缺陷有关。冷却速率越高,合金组织越细,并且Mg、Mn固溶在α-Al基体内的含量增多,所以合金强度越高。然而,压铸合金中,组织内存在气孔和针状Mg_2Si相降低了合金的塑性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号