首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new technique for preparing magnesia ceramics of high porosity and high temperature resistance has been developed. Spray freeze drying of magnesium sulfate aqueous solution produced fine salt particles having open pores due to sublimation of ice crystals. The particles were calcined to porous magnesium oxide and formed a green body. Highly porous magnesia was produced by firing the green body. The porous magnesia exhibited a bimodal pore size distribution of macro-pores of micron order and meso-pores smaller than 100 nm. Porosity was 87–90%. After addition of an aluminum additive with an amount 3–5 mol%, the magnesia exhibited high heat resistance; surface area was greater than 20 m2 g−1 after 20 h exposure in a 1573 K oven. Thus, the porous magnesia is expected to be very suitable for combustion catalyst support used in a high temperature environment.  相似文献   

2.
Three-dimensional (3D) long range well ordered macroporous SiCN ceramics were prepared by infiltrating sacrificial colloidal silica templates with the low molecular weight preceramic polymer, polysilazane. This was followed by a thermal curing step, pyrolysis at 1250 °C in a N2 atmosphere, and finally the removal of the templates by etching with dilute HF. The produced macroporous SiCN ceramics showed high BET surface areas (pore volume) in the range 455 m2/g (0.31 cm3/g)–250 m2/g (0.16 cm3/g) with the pore sizes of 98–578 nm, which could be tailored by controlling the sizes of the sacrificial silica spheres in the range 112–650 nm. The sphere-inversed macropores were interconnected by 50 ± 30 nm windows and 3–5 nm mesopores embedded in the porous SiCN ceramic frameworks, which resulted in a trimodal pore size distribution. The surface of the achieved porous SiCN ceramic was then modified by Pt–Ru nanoparticle depositing under mild chemical conditions.  相似文献   

3.
Porous Si3N4 ceramics with monomodal and bimodal pore structure were prepared by cold isostatic pressing and freeze-casting, respectively. Both the pore structure and permeability behavior of the porous Si3N4 ceramics were tailored by altering the pressure of cold isostatic pressing and the composition and content of solvent during freeze-casting. The specimens obtained by cold isostatic pressing exhibited smaller Darcian and non-Darcian permeability than those of freeze-casted samples due to their lower open porosity, smaller pore size and higher tortuosity. On the other hand, compared with the ice-templated specimens having the same solvent volume in the ceramic slurries as them during freeze-casting, the emulsion-ice templated samples showed smaller open porosity, macropore size and Dacian permeability, but the similar non-Darcian permeability because of their larger micropores and better pore interconnectivity.  相似文献   

4.
Nanosized 3Y-TZP powders with particle size of 10–40 nm were formed by gelcasting, dry pressing and cold isostatic pressing. The influence of particle size as well as forming methods on the microstructure and mechanical properties of specimens were investigated. Both SEM images and the analysis on pore size distribution reveal that the gelcast sample possessed more homogenous microstructure. 3Y-TZP powders with particle size of 10 nm have been gelcast with green density as 37.5% of theory and sintered density as high as 96% was achieved. Its fracture toughness was up to 11.9 MPa m1/2 and the hardness value HV10 is of 15.2 GPa. The difference of microstructure and mechanical properties is explained in terms of the differences in grain size and the forming methods.  相似文献   

5.
Foam‐gelcasting‐freeze drying method is developed to fabricate porous Y2SiO5 ceramic with ultrahigh porosity of 92.2%‐95.8% and isotropous multiple pore structures. As prepared porous samples have quite low shrinkages of 0.8%‐1.9% during demolding and drying processes, lightweights of 0.19‐0.35 g/cm3, and extremely low thermal conductivities of 0.054‐0.089 W·(m·K)?1. Our approach combines the merits of foam‐gelcasting method and freeze drying method. It is a simple and effective method to fabricate porous ceramics with very high porosity and extremely low thermal conductivity through low shrinkage of green body and near net complex shape forming.  相似文献   

6.
Alumina-ceramic membranes were prepared by gelcasting process using CTAB as a foaming agent. To increase the fineness, the starting alumina powder was milled for 1 h in a ball mill before the casting process. Particle size distribution and surface area measurements of the as-received and milled alumina powder were examined. The casted alumina membranes were sintered at 1500 °C. Sintering parameters in terms of bulk density (BD) and apparent porosity (AP) were determined by the Archimedes method. Pore size distribution of the sintered porous alumina membranes was measured using mercury porosimeter. Microstructure of sintered membranes was investigated by scanning electron microscope (SEM). Cold crushing strength (CCS) of the sintered specimens was also evaluated. The result revealed that the properties of porous ceramics such as porosity, average pore size, pore size distribution and cold crushing strength could be controlled by adjusting the preparation conditions e.g. solid loading, sintering temperature and foaming agent. The open porosity, cold crushing strength and average pore size of the alumina ceramics sintered at 1500 °C were around 58.35%, 18 MPa and178 nm, respectively.  相似文献   

7.
Zirconia samples have been prepared by precipitation from an aqueous solution of zirconyl nitrate followed by calcination in flowing air at temperatures up to 970 K. The textural properties (SBET and pore size distribution) of these zirconia powders were very sensitive to the activation procedure. Calcination in carefully controlled conditions at 770 K yielded crystallized zirconia with surface area (SBET ≈ 130 m2 g−1) and porosity suitable for use as a catalyst carrier.

Zirconia samples doped with yttrium, nickel or aluminium were obtained by impregnation of the amorphous hydrous oxide. For solids calcined at 770–970 K, the surface area and thermal stability were improved, but the porosity was lower.  相似文献   


8.
This work presents a comparative study of structural and aerodynamic properties of cellular ceramics prepared by two different techniques: the ceramic replication of an organic substrate and the gelcasting of foams. Permeability constants calculated from Ergun's equation were related to their apparent porosity and pore size. The technique of gelcasting of foams yielded structures as porous as the replication technique does, but with smaller pores and a fully densified strut. This type of structure ensures a higher mechanical strength without a significant decrease in the permeability.  相似文献   

9.
The previous report of this work has demonstrated the fabrication and properties of porous yttria-stabilized zirconia (YSZ) ceramics with unidirectionally aligned pore channels. As a follow-up study, the present work aims at lowering the thermal conductivity of the porous YSZ ceramics by silica aerogels impregnation. The porous YSZ ceramics were immersed in an about-to-gel silica sol. Both the unidirectionally aligned pore channels and the inter-grain pores by grain stacking in the channel-pore wall of the porous YSZ ceramics were impregnated with the silica sol. After aging and supercritical drying, silica aerogels formed in the macroporous network of the porous YSZ ceramics with unidirectionally aligned pore channels. The influences of silica aerogel impregnation on the microstructure and properties of porous YSZ ceramics with unidirectional aligned pore channels were investigated. The porosity decreased after impregnation with silica aerogels. Both microstructure observation and pore size distribution indicated that both channel-pore size and inter-grain pore-size decreased significantly after impregnation with silica aerogels. Impregnating porous YSZ ceramics with silica aerogels remarkably lowered the room-temperature thermal conductivity and enhanced the compressive strength. The as-fabricated materials are thus suitable for applications in bulk thermal isolators.  相似文献   

10.
Porous yttria-stabilized zirconia (YSZ) ceramics are fabricated through freeze casting of oil-in-water suspension followed by sintering at 1250−1550 °C. The pore structure, compressive strength and permeability of porous YSZ ceramics are tailored via altering the emulsion content and sintering temperature. The samples obtained using higher emulsion content or at lower sintering temperature show larger Darcian and non-Darcian constants due to their higher open porosity and larger pore size. Furthermore, the investigation on individual contributions of viscous and inertial resistances on the total pressure drop during permeation process indicates that the viscous resistance increases but the inertial resistance decreases with increasing the emulsion content or decreasing the sintering temperature for samples. Porous YSZ ceramics obtained in this work with a k1 range of 3.14 × 10−13–1.12 × 10−12 m2 are appropriate for applications in filters and membrane supports.  相似文献   

11.
周剑  江倩  杨怡  冯厦厦  仲兆祥  邢卫红 《化工学报》2021,72(4):2293-2299
分别采用十二烷基苯磺酸钠、氢氧化钠以及NaA分子筛残渣为烧结助剂,碳粉为造孔剂,干压法成型,在1150℃空气气氛下烧结制备碳化硅多孔陶瓷支撑体。考察了助剂添加量对微结构、平均孔径、孔隙率以及抗热震性等方面的影响;分析了添加助剂的低温烧成机理。研究结果表明:三种添加剂均有助于提高支撑体的气体渗透性、抗弯强度和耐热震性;添加NaA分子筛残渣助烧结剂获得的碳化硅多孔陶瓷各项性能最佳,气体渗透率为1300 m3/(m2·h·kPa),强度可达27 MPa,且抗热震性能良好。  相似文献   

12.
Porous ceramics of Y2O3-stabilized ZrO2 (YSZ) were prepared by tape-casting methods using both pyrolyzable pore formers and NiO followed by acid leaching. The porosity of YSZ wafers increased in a regular manner with the mass of graphite or polymethyl methacrylate (PMMA) to between 60% and 75% porosity. SEM indicated that the shape of the pores in the final ceramic was related to the shape of the pore formers, so that the pore size and microstructure of YSZ wafers could be controlled by the choice of pore former. Dilatometry measurements showed that measurable shrinkage started at 1300 K, and a total shrinkage of 26% was observed, independent of the amount or type of pore former used. Temperature-programmed oxidation (TPO) measurements on the green tapes demonstrated that the binders and dispersants were combusted between 550 and 750 K, that PMMA decomposed to methyl methacrylate between 500 and 700 K, and that graphite combusted above 900 K. The porosity of YSZ ceramics prepared by acid leaching of nickel from NiO–YSZ, with 50 wt% NiO, was studied as a function of NiO and YSZ particle size. Significant changes in pore dimension were found when NiO particle size was changed.  相似文献   

13.
A porous NiO–YSZ substrate for anode-supported solid oxide fuel cells has been prepared by gelcasting of NiO–YSZ powders using urea–formaldehyde monomers, followed by humidity-controlled drying, binder removal, and sintering of the gelled bodies. The gelled bodies had sufficient strength to remove even 2-mm-thick samples from the mold immediately after gelation. A gelcast NiO–YSZ sample sintered at 1450°C for 2 h showed an open porosity of ∼53 vol%, and the porosity increased to ∼58% upon reduction with hydrogen. Pore sizes measured on the scanning electron microscopy photomicrograph of NiO–YSZ and Ni–YSZ cermet substrates are in the range of 2–5 μm. Urea–formaldehyde polymer, present in a high amount (∼13 wt%) in the gelcast body, acts as a template for pores.  相似文献   

14.
In this study, the low–toxicity monomer N, N–dimethylacrylamide (DMAA), serving as both gelling agent and pore–forming agent, was adopted to fabricate porous Si3N4 ceramics with a regulatable microstructure and property by aqueous gelcasting. Results indicate that monomer content played an important role in regulating and optimizing the properties of sintered bodies. With increasing monomer content (5.94–30.69?wt%), both slurry viscosity (maximum 0.14?Pa?s at 95.40 s?1) and green body strength (11.35–49.23?MPa) exhibited monotonic increasing trends, demonstrating superior mechanical properties to those obtained using the neurovirulent acrylamide (AM) gelling system. The increased monomer content not only improved porosity, but also promoted α→β–Si3N4 transformation as well as β–Si3N4 grain growth through enhancing the connectivity of interlocking pores and accelerating the vapor phase transport during liquid–phase sintering. These variations in phase composition and microstructure derived from the varied monomer content further resulted in monotonic changes in porosity (40.32–51.50%), mean pore size (0.27–0.38?μm), flexural strength (202.77–132.15?MPa), fracture toughness (2.93–2.32?MPa?m1/2), dielectric constant (3.48–2.78) and loss (3.52–3.09?×?10?3) at 10?GHz for sintered bodies, displaying an excellent comprehensive properties. This study suggests a promising prospect for DMAA in preparation of high–performance porous Si3N4 ceramics by aqueous gelcasting.  相似文献   

15.
Cerium/gadolinium oxide (CGO)-based ceramic ion conductive membranes (CICMs) have potential uses in catalytic membrane reactors (CMRs) and solid oxide fuel cells (SOFCs). A supercritical CO2 aided sol–gel process allowed the synthesis of CGO materials with the composition Ce0.9Gd0.1O1.95. The produced nanophase powders were non-agglomerated, with a controlled morphology, a high purity and a high specific surface area (>100 m2/g). The CGO cubic crystalline phase has been obtained at temperatures <300 °C, lower than those of conventional solid state chemistry routes. With respect to ionic oxygen transport, a high conductivity at intermediate temperature (2 × 10−2 S cm−1 at 600 °C), almost equivalent in dense and porous samples, has been obtained on sintered materials prepared from these powders. In relation to their porosity characteristics, a modelling approach successfully explained the high ionic oxygen transport of some specific porous samples. Future directions for preparing porous conductive ceramics well adapted to CMR or SOFC applications can be anticipated from this model.  相似文献   

16.
Gelcasting is conventionally used to acquire high-density ceramic parts; however, in this work, alumina (Al2O3) ceramics with ultra-low density (8%–40% theoretical density) were successfully fabricated by this method. In this research, polymerization of acrylamide was realized in tert-butyl alcohol/Al2O3 slurries with solid loading ranging from 5 to 15 vol%. Green bodies with ultra-low density could be dried with very small shrinkage, and relatively high green strengths (1–3 MPa) were achieved. By choosing different initial solid loadings and sintering temperatures, ceramic microstructures could be effectively controlled, with the porosity ranging from 60% to 92% and pore sizes from 0.1 to 2.2 μm. Sintered Al2O3 showed high open porosity (90%), high specific area (14 m2/g) and high compression strength (>10 MPa), which was attributed to the connection of Al2O3 particles. This technique is considered potentially useful in many applications, and introduces a new application field of gelcasting.  相似文献   

17.
Porous yttria-stabilized zirconia (YSZ) ceramics were fabricated by tert-butyl alcohol (TBA)-based gel-casting method for potential applications in heat-insulation materials. The effect of sintering temperature on compressive strength of porous YSZ ceramics was investigated on the basis of measurements linear shrinkage, porosity and pore size. As the sintering temperature increased from 1350 to 1550 °C, a decrease of porosity from 77 to 65%, a decrease of average pore size from and an increase of linear shrinkage from 15.4 to 31.8% were observed. The compressive strength increased remarkably from 3 to 27 MPa with increasing sintering temperature from 1350 to 1550 °C, which was related to the corresponding change of linear shrinkage, porosity, pore size and microstructure. A remarkable decrease of compressive strength with increasing porosity was observed. The compressive strength decreased also with increasing pore size.  相似文献   

18.
Open-cell hydroxyapatite (HA) foams, produced through the novel technique of gelcasting foams with relative porosities ranging from 0.72 to 0.90, were characterized for pore-size distribution, surface area, permeability, compressive strength, elastic modulus, and microstructural features. The porous structure, which is composed of an array of spherical cells interconnected through windows, had a mode pore diameter in the range 17–122 μm, as demonstrated by mercury porosimetry. The BET specific surface area increased from 1.5 to 3.8 m2/g as the sample porosity increased. The compressive strength and elastic modulus were in the range 1.6–5.8 MPa and 3.6–21.0 GPa, respectively. The permeability constants, k 1 (Darcian) and k 2 (non-Darcian), were strongly dependent on porosity fraction and varied widely, from 1.22 × 1011 to 4.31 × 1010 m2 and from 1.75 × 106 to 8.06 × 105 m, respectively. This combination of properties make the HA foams suitable for a variety of potential applications in the biomedical field, preferentially nonloading, including materials for bone repair, carriers for controlled drug-delivery systems, and matrixes for tissue engineering.  相似文献   

19.
注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅲ)   总被引:8,自引:2,他引:6  
采用90年代初发明的注凝成型技术制备微孔梯度陶瓷材料。在研究了不同粒度的Al2O3和高温粘结剂混合物浆料的制备方法及固体含量、高温粘接剂、颗粒度对制品的烧成收缩率、气孔率、强度、孔径及其分布和渗透性等物理性能影响的基础上,进一步研究了微孔梯度陶瓷材料的制备方法及其性能。通过研究实现了孔梯度陶瓷材料一次烧成。坯体和烧结体的显微结构表明:不同粒度导的界面清晰,缺陷少,结合强度高;粒度、孔径在横向方向呈均匀分布,在纵向方向呈梯度分布,各层材料的收缩一致,确保了孔梯度陶瓷材料的稳定烧成。  相似文献   

20.
A new method for preparing porous silicon nitride ceramics with high porosity had been developed by carbothermal reduction of die-pressed green bodies composed of silicon dioxide, carbon, sintering additives, and seeds. The resultant porous silicon nitride ceramics showed fine microstructure and uniform pore structure. The influence of SiO2 particle size and sintering process (sintering temperature and retaining time) on the microstructure of sintering bodies was analyzed. X-ray diffractometry demonstrated the formation of single-phase β-Si3N4 via the reaction between silicon dioxide and carbon at high temperature. SEM analysis showed that pores were formed by the banding up of rod-like β-Si3N4 grains. Porous Si3N4 ceramics with a porosity of 70–75%, and a strength of 5–8 MPa, were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号