首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
磷化钨催化剂的表征和加氢精制性能   总被引:4,自引:2,他引:2  
采用在H2气中程序升温还原磷化反应的方法合成了磷化钨(WP)和负载型磷化钨催化剂(WP/γ-Al2O3),用XRD、TEM和XPS等技术表征了合成的催化剂,并考察了WP催化剂的加氢精制性能。采用TGDTA手段研究了WP催化剂的还原磷化过程,证明其为一步反应过程。WP催化剂钝化时,其表面层能被氧化,但不改变其体相结构。活性组分W和γ-Al2O3载体之间有较强的相互作用,使γ-Al2O3表面上的W组分在催化剂合成的温度下不能完全还原为磷化物而形成Al-O-W-P结构。WP/γ-Al2O3催化剂具有优良的加氢脱氮(HDN)和加氢脱硫(HDS)性能,特别是对大分子含氮有机化合物有更高的脱氮活性。助剂Co和Ni对WP/γ-Al2O3催化剂具有助催化作用,但助剂Ni对吡啶的脱氮性能有抑制作用。含有助剂Ni的WP/γ-Al2O3催化剂对柴油显示了比硫化态的工业催化剂更良好的HDS性能。  相似文献   

2.
CoMo/SBA-15-γ-Al2O3催化剂的加氢脱硫活性研究   总被引:1,自引:1,他引:0  
采用介孔分子筛SBA-15和γ-Al2O3制备混合载体SBA-15-γ-Al2O3,担载Co-Mo金属活性组分制备深度加氢脱硫催化剂CoMo/SBA-15-γ-Al2O3。BET表征结果表明,混合载体负载金属后仍然具有介孔材料的特性,表面积略有下降。以直馏柴油为原料,在固定床微型反应器上评价了该催化剂的加氢脱硫反应活性。结果表明,在催化剂CoO和MoO3的质量分数分别为5%和20%、反应温度360 ℃、反应压力6 MPa、氢油体积比600、体积空速2 h-1的条件下,柴油硫含量可由829 μg/g降至6 μg/g。  相似文献   

3.
在高压固定床微反装置上研究了豆油在加氢催化剂CoMo/γ-Al2O3,NiMoP/γ-Al2O3,NiMoP/γ-Al2O3-HUSY上的加氢反应规律,并研究了NiMoP/γ-Al2O3-HUSY催化剂对豆油和流化催化裂化(FCC)柴油耦合加氢产物性质的影响。实验结果表明,在压力3.0MPa、温度320℃、液态空速2.0h-1、氢气与原料油体积比(氢油比)500的条件下,CoMo/γ-Al2O3和NiMoP/γ-Al2O3催化剂上豆油加氢产物主要为n-C15~18,而添加酸性组分的NiMoP/γ-Al2O3-HUSY催化剂的裂化性能增强,产物中n-C15~18含量明显减少,C1-5的含量增加;在压力4.0MPa、温度370℃、液态空速1.0h-1、氢油比500的条件下,豆油和FCC柴油的混合原料在NiMoP/γ-Al2O3-HUSY催化剂上的加氢脱硫率达97%左右,加氢脱氮率达80%以上,产物的十六烷值与未掺炼豆油的FCC柴油加氢产物相比,提高了1.8~6.5个单位。  相似文献   

4.
非负载型催化剂上柴油深度加氢脱硫工艺条件研究   总被引:1,自引:0,他引:1  
采用水热合成法制备了非负载型Ni-Mo-W催化剂并对其进行表征,研究催化裂化(FCC)柴油在该催化剂上的深度加氢脱硫过程,考察反应温度、反应压力、空速和氢油比等工艺条件对柴油深度加氢脱硫效果的影响,并与工业化NiMo/Al2O3催化剂的加氢活性进行对比。结果表明,在反应温度为340 ℃、反应压力为6.0 MPa、空速为1.5 h-1、氢油体积比为600的条件下,非负载型Ni-Mo-W催化剂可使胜华FCC柴油的脱硫率达到99.84%,脱氮率达到99.96%,与工业化NiMo/Al2O3催化剂相比,非负载型Ni-Mo-W催化剂具有更高的加氢活性。  相似文献   

5.
分别采用超声波辐照浸渍法和普通浸渍法制备了MnO2/γ-Al2 O3催化剂,运用电感耦合等离子体原子发射光谱(ICP-AES)和X射线衍射(XRD)对催化剂进行表征,在空气-异丁醛-MnO2/γ-Al2 O3体系中评价其对加氢柴油的氧化脱硫催化性能,并考察了反应温度、异丁醛用量、空气流量、溶剂类型和剂/油体积比对柴油氧化脱硫反应的影响.结果表明,超声波辐照浸渍法制备的MnO2/γ-Al2 O3催化剂对柴油氧化脱硫的催化性能明显优于普通浸渍法制备的催化剂.最适宜的催化柴油氧化脱硫反应的条件为:乙腈为溶剂、加氢柴油30 mL、温度35℃、异丁醛20 mmol、空气流量0.06 L/min、超声波辐照浸渍法制备的MnO2/γ-Al2 O3催化剂0.08 g、剂/油体积比1/6和催化氧化时间10 min.在此条件下可将柴油硫质量分数从542 μg/g降至31 μg/g,柴油脱硫率和回收率分别为94.3%和93.3%.  相似文献   

6.
制备了不同镍源的NiMoS/γ-Al2O3加氢精制催化剂,并对其进行了XRD,H2-TPR,HRTEM表征;以直馏柴油和催化裂化柴油的混合油为原料,在100 mL高压固定床柴油加氢精制装置上评价了催化剂的加氢精制性能。实验结果表明,在反应温度340℃、氢分压6.0 MPa、氢油体积比500∶1、液态空速1.5 h-1的工艺条件下,以次磷酸镍为镍源的NiMoS/γ-Al2O3催化剂上的脱硫率达到98.4%,脱氮率达到99.6%,其加氢精制性能略优于两种参比催化剂,这可能与其活性相具有较高的堆积层数和活性位密度有关。  相似文献   

7.
为考察碳纳米管(CNTs)载体在煤直接液化油加氢中的应用,将经功能化处理后碳纳米管负载活性组分NiMoP,对其进行SEM、TEM、BET、FT-IR、XRD、TG-DSC等表征,并采用高压釜对碳纳米管负载 NiMoP催化剂与常规的γ-Al2O3负载NiMoP催化剂进行煤直接液化油催化加氢活性的比较。结果表明:碳纳米管经浓硝酸纯化后,表面嫁接上更多的亲水性官能团,杂质含量降低,活性组分均匀分布在碳纳米管外壁。在液化油催化加氢活性对比中,以碳纳米管作为载体制备的NiMoP/CHCNTs催化剂,反应的相对加氢脱氮率为126(设定以γ-Al2O3为载体NiMoP催化剂的加氢脱氮率为100),其加氢性能优于NiMoP/γ-Al2O3催化剂。  相似文献   

8.
《石油化工》2015,44(7):852
采用等体积浸渍法制备HY-γ-Al2O3,Ni-W-P/HY,Ni-Mo-P/γ-Al2O3催化剂用于页岩油加氢精制。在中试装置上考察反应温度、反应压力、氢气与页岩油的体积比(氢油比)和液态空速及催化剂的装填工艺等条件对页岩油加氢精制的影响。试验结果表明,3层催化剂(HY-γ-Al2O3,Ni-W-P/HY,Ni-Mo-P/γ-Al2O3)的页岩油加氢精制工艺具有较好的精制效果,适宜的加氢精制条件为:温度400℃、压力9.0 MPa、氢油比为600、液态空速为0.5 h-1。在此条件下页岩油的脱硫率达96.8%,脱氮率达90.5%。与单层催化剂(HY-γ-Al2O3)及2层催化剂(HY-γ-Al2O3和Ni-W-P/HY)相比,采用3层催化剂的页岩油加氢工艺的脱硫率分别提高了2.3%和1.5%,脱氮率分别提高了4.9%和3.3%。  相似文献   

9.
含氮化合物对NiW体系催化剂芳烃加氢性能的影响   总被引:2,自引:0,他引:2  
以γ-Al2O3、B改性的γ-Al2O3、F改性的γ-Al2O3、SiO2-Al2O3为载体制备Ni、W含量相同的四种催化剂,通过程序升温还原表征考察活性金属与不同载体的相互作用。利用氮含量不同、四氢萘含量相同的四种原料考察含氮化合物对同种NiW体系催化剂四氢萘加氢的影响以及对活性金属与载体相互作用不同的催化剂四氢萘加氢的影响。结果表明,以γ-Al2O3或SiO2-Al2O3载体制备的催化剂的金属组分与载体相互作用较强,B或F改性的γ-Al2O3能显著削弱活性金属与载体的相互作用;含氮化合物对四氢萘加氢具有强烈的抑制作用,使四氢萘加氢反应的表观活化能增加;在实验研究的四种催化剂中,金属组分与载体相互作用较弱的催化剂受含氮化合物的抑制较强。  相似文献   

10.
制备了以γ-Al2O3为载体的Ni基选择性加氢硫转移催化剂Mo-Ni/γ-Al2O3,并用于催化裂化(FCC)汽油的加氢硫转移反应。对比了预硫化型和氧化型Mo-Ni/γ-Al2O3催化剂的活性和选择性,并考察了无氧焙烧温度、活性组分负载量对预硫化型Mo-Ni/γ-Al2O3催化剂加氢硫转移催化性能的影响。采用模型化合物研究了硫醇在MoNi/γ-Al2O3催化下的反应,考察了烯烃和硫醇对硫转移反应的影响。结果表明,无氧焙烧温度400℃下制备得到的w(NiO)=8.2%、w(MoS2)=5.6%的预硫化型Mo-Ni/γ-Al2O3催化剂具有相对较高的加氢硫转移反应催化活性和选择性;硫醇与烯烃的反应在催化剂表面的加氢活性位上进行,硫醇先加氢脱硫,生成吸附态H2S,吸附态H2S再与吸附的烯烃反应生成大分子硫醇或硫醚,达到硫转移的目的。  相似文献   

11.
M0-Ni-P柴油加氢精制催化剂的研制   总被引:11,自引:3,他引:8  
采用Y型分子筛改性和共浸法制备了Mo-Ni-P/HUSY-Al2O3柴油加氢精制催化剂,利用模型化合物二苯并噻吩、喹啉和萘(甲苯为溶剂)的加氢反应,考察了载体预处理和浸渍方法对催化剂的HDS、HDN和HDAr活性的影响.通过正交试验确定了最佳实验条件和催化剂组分的配比.结果表明,采用26%(NiO+MoO3)-P/(15%HUSY+85%γ-Al2O3)催化剂,在340℃、4MPa、3h-1的条件下,可得到100%脱硫率和脱氮率,以及95.3%芳烃加氢饱和率.提出了二苯并噻吩加氢脱硫、喹啉加氢脱氮和萘加氢饱和的反应历程.二苯并噻吩的加氢脱硫有两条平行的反应路线氢解脱硫和加氢-氢解脱硫,最终产物为联苯和苯基环己烷.喹啉加氢脱氮的中间产物主要为四氢喹啉、十氢喹啉和丙基苯胺,最终产物为丙基苯和丙基环己烷.萘加氢饱和的中间产物为四氢萘、十氢萘和丁基苯,进一步反应则生成丁基环己烷,并有可能开环生成异癸烷.  相似文献   

12.
在CoMoP共浸渍液中加入乙二醇(EG)制备CoMoP-EG/γ-Al2O3系列催化剂。采用UV-Vis、TG/DTG、FT-IR、低温N2吸附、H2-TPR、HRTEM等手段对其进行表征,并以直馏柴油为原料,采用高压微反装置评价催化剂的加氢脱硫和加氢脱氮活性。结果表明,浸渍液中的乙二醇未与活性金属离子形成新的配合物。乙二醇与载体发生相互作用形成Al-O-C键,减弱了活性组分与载体的相互作用,提高了活性组分的分散性。与未加乙二醇制备的硫化态CoMoP/γ-Al2O3相比,硫化态CoMoP-EG/γ-Al2O3催化剂中MoS2晶粒的堆垛层数增加,片层长度减少,有利于Ⅱ型Co-Mo-S活性相的形成。在反应温度350℃、氢分压6.0 MPa、空速1.5h-1、氢/油体积比400条件下,采用最佳乙二醇加入量制备的CoMoP-EG/γ-Al2O3催化剂,可使直馏柴油的硫质量分数由13298μg/g降至6μg/g,氮质量分数由169.7μg/g降至0.4μg/g。  相似文献   

13.
采用不同焙烧温度制备了一系列γ-Al2O3载体,并利用等体积浸渍法制备相应的MoNiP/γ-Al2O3催化剂,借助N2物理吸附-脱附和XRD等方法对载体和催化剂进行表征,同时以甲苯、噻吩和喹啉为模型化合物,在微反装置上评价催化剂的芳烃加氢、加氢脱硫(HDS)和加氢脱氮(HDN)的活性。表征结果显示,随焙烧温度的升高,γ-Al2O3载体及其催化剂的孔体积变化不大,但平均孔径增大,比表面积降低。实验结果表明,适宜的焙烧温度为600℃,利用该温度焙烧的载体制得的MoNiP/γ-Al2O3催化剂表面的中强酸和强酸的含量较高,且芳烃加氢、HDS和HDN的活性最高。  相似文献   

14.
研究了二苯并噻吩(DBT)和4-甲基二苯并噻吩(4-MDBT)在Mo/γ-Al2O3和CoMo/γ-Al2O3上加氢脱硫反应的产物分布及其可能的反应网络,并通过反应压力和温度对产物分布的影响,揭示了加氢脱硫反应的可能机理。DBT在Mo/γ-Al2O3上的加氢脱硫反应主要通过直接氢解路径和加氢路径进行,两种途径的作用相近;在CoMo/γ-Al2O3催化剂上的加氢脱硫主要通过直接氢解路径进行。4-MDBT在Mo/γ-Al2O3和CoMo/γ-Al2O3上的加氢脱硫反应主要通过加氢路径进行。Co的加入有助于提高Mo/γ-Al2O3催化剂的加氢脱硫活性,尤其是直接氢解脱硫活性。4-MDBT加氢脱硫反应中加氢路径的相对作用显著大于DBT加氢脱硫反应的加氢路径,间接证明4-MDBT的加氢脱硫过程存在对“端连吸附”的空间位阻。4-MDBT分子中甲基的供电子作用有利于促进苯环的加氢反应,从而有助于缩小与DBT分子间加氢脱硫活性的差别。在DBT和4-MDBT加氢脱硫反应中,反应压力和温度对加氢路径的影响大于对氢解路径的影响。  相似文献   

15.
以硫化态Co-Mo/Al2O3为催化剂,利用固定床小型加氢反应装置,考察了反应温度、反应压力、体积空速、氢/油体积比对抚顺页岩油柴油馏分加氢精制效果的影响。结果表明,升高反应温度、增大反应压力、降低体积空速,有利于抚顺页岩油柴油馏分的脱硫、脱氮和烯烃饱和,特别是可明显提高加氢脱氮效果,而氢/油体积比的改变对产物性质影响相对较小。在反应温度380℃、反应压力7MPa、体积空速0.5h-1、氢/油体积比600的条件下,抚顺页岩油柴油馏分加氢精制后,其杂原子和不饱和烃含量低、密度小、芳香烃含量少,可作为优质清洁柴油直接使用。  相似文献   

16.
以等体积浸渍法制备Ni-Mo/Al2O3催化裂化柴油加氢处理催化剂,在金属浸渍液配置过程中引入一定比例的络合剂氨基三乙酸(NTA)制备改性催化剂Ni-Mo-NTA/Al2O3,通过改性前后催化剂的对比分析研究氨基三乙酸对催化剂加氢脱硫和脱氮活性的影响。采用100 mL高压加氢反应装置对催化剂进行加氢脱硫、脱氮反应活性评价,并以NH3-TPD,H2-TPR,BET,HRTEM 等手段对催化剂进行表征。结果表明,引入氨基三乙酸后催化剂在不同反应温度等级下加氢脱硫和脱氮活性均有提高,这是由于氨基三乙酸改性后催化剂表面酸量提高,载体与金属作用力削弱,金属还原度提高,孔结构得到改善,MoS2金属堆垛层数集中在2~3层,片晶长度集中在2~4 nm,金属分散度提高。  相似文献   

17.
抚顺页岩油柴油馏分加氢精制的工艺条件   总被引:1,自引:1,他引:0  
以硫化态Co-Mo/Al2O3为催化剂,利用固定床小型加氢反应装置,考察了反应温度、反应压力、体积空速、氢/油体积比对抚顺页岩油柴油馏分加氢精制效果的影响。结果表明,升高反应温度、增大反应压力、降低体积空速,有利于抚顺页岩油柴油馏分的脱硫、脱氮和烯烃饱和,特别是可明显提高加氢脱氮效果,而氢/油体积比的改变对产物性质影响相对较小。在反应温度380℃、反应压力7MPa、体积空速0.5h-1、氢/油体积比600的条件下,抚顺页岩油柴油馏分加氢精制后,其杂原子和不饱和烃含量低、密度小、芳香烃含量少,可作为优质清洁柴油直接使用。  相似文献   

18.
利用活性白土脱除原料中的氮化物,得到硫含量相同而氮含量不同的3种柴油原料,以Ni-Mo-W/γ-Al_2O_3和Co-Mo/γ-Al_2O_3为催化剂,利用中型固定床加氢装置考察氮化物对超深度加氢脱硫反应的影响。实验结果表明,在真实油品复杂体系中,氮化物对加氢脱硫反应存在明显的抑制作用,并且随脱硫深度的增加,氮化物的影响越明显;在原料氮含量较低的情况下,Ni-Mo-W型催化剂上加氢脱硫反应的表观活化能明显低于Co-Mo型催化剂,加氢脱硫反应的活性显著高于Co-Mo型催化剂,并且随LHSV的增加,两者相差越大。采用氮含量为6.7μg/g的原料油C时,在反应温度355℃、氢分压6.4 MPa、LHSV=6.0 h~(-1)、氢油体积比300的条件下,在Ni-Mo-W型催化剂上的产品硫含量为10.0μg/g。  相似文献   

19.
将介孔分子筛SBA-15和γ-Al2O3通过机械混合制得混合载体,担载Mo-Ni-P活性组分,制备了直馏柴油加氢脱硫催化剂。在固定床反应器上,以直馏柴油为原料,对该催化剂进行加氢脱硫反应活性评价。结果表明,最佳加氢脱硫反应条件为:温度360℃,压力6.0 MPa,氢气/原料油(体积比)600,空速2.0 h-1。在此条件下,直馏柴油的脱硫率达到98.23%,总硫量由811μg/g降至16μg/g。  相似文献   

20.
以炼油厂常压柴油为原料,在固定床加氢反应器上进行催化加氢脱硫反应动力学研究。在工业级钴钼催化剂作用下,考察反应温度、H2分压、氢油体积比和液态空速对常压柴油催化加氢脱硫反应活性影响的规律。建立常压柴油催化加氢脱硫反应的动力学模型,并运用Levenberg-Marquard复合算法优化计算反应动力学模型中的相关参数。实验结果表明,在一定条件下,适当地增加反应温度、氢油体积比、H2分压以及减小液态空速,可提高常压柴油的脱硫率;动力学研究得出反应级数为1.6,表观活化能为18 580.24 J/mol;在实验条件范围内,建立了常压柴油催化加氢脱硫反应动力学模型;对所建模型进行相关性检验,发现实验值与模型计算值基本吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号