首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Presentations from a Fusion Power Associates symposium, Fusion and Energy Policy, are summarized. The topics include an overview of U.S. Department of Energy policies, fusion strategies in Europe and Japan, plans for U.S. participation in the construction of ITER, status of construction of the National Ignition Facility and recent progress in all aspects of magnetic and inertial fusion.  相似文献   

2.
This is Volume 1 of the report of a panel established by the U.S. Department of Energy Fusion Energy Sciences Advisory Committee (FESAC) and submitted in July 2005. The panel was charged to answer the following questions: What are the unique and complementary characteristics of each of the major U.S. fusion facilities? How do the characteristics of each of the three U.S. fusion facilities make the U.S. toroidal research program unique as a whole in the international program? How well do we cooperate with the international community in coordinating research on our major facilities and how have we exploited the special features of U.S. facilities in contributing to international fusion research, in general, and to the ITER design specifically? How do these three facilities contribute to fusion science and the vitality of the U.S. Fusion program? What research opportunities would be lost by shutting down one of the major facilities?  相似文献   

3.
Presentations from a Fusion Power Associates (FPA) symposium, Fusion: Pathways to the Future, are summarized. The topics include an overview of the U.S. Department of Energy policies, status and plans for inertial fusion and ITER, and the role of alternate concepts in fusion development. Copies of the presentations are posted at  相似文献   

4.
Two strategic decisions facing the U.S. fusion program are described. The first decision deals with the role and rationale of the tokamak within the U. S. fusion program, and it underlies the debate over our continuing role in the evolving ITER collaboration (mid-1998). The second decision concerns how to include Inertial Fusion Energy (IFE) as a viable part of the national effort to harness fusion energy.  相似文献   

5.
This is Volume 2 of a report of a panel established by the U.S. Department of Energy Fusion Energy Sciences Advisory Committee (FESAC) charged to review the three major U.S. fusion facilities. The Panel requested input from each of the three major U.S. toroidal magnetic fusion facilities. The request included an invitation to each facility program director to provide a document that addressed in detail the panel charge. This paper consists of the three documents that were received in response to that request.  相似文献   

6.
The 2002 Fusion Summer Study was conducted July 8–19, 2002, in Snowmass, CO, and carried out a critical assessment of major next steps in the fusion energy sciences program in both magnetic fusion energy (MFE) and inertial fusion energy (IFE). The conclusions of this study were based on analysis led by over 60 conveners working with hundreds of members of the fusion energy sciences community extending over eight months. This effort culminated in two weeks of intense discussion by over 250 U.S. and 30 foreign fusion physicists and engineers present at the 2002 Fusion Summer Study. This is the Executive Summary of the study report. Details are posted at http://web.gat.com/snowmass  相似文献   

7.
This report was prepared by a Working Group at the request of the U.S. Department of Energy, Office of Fusion Energy Sciences in 1997. The report addresses technical opportunities for mutually beneficial collaboration between the United States and other international fusion research programs. A number of outstanding opportunities are discussed.  相似文献   

8.
Fusion is recognized as a sufficiently abundant and environmentally attractive energy source to sustain industrial society in the 21st century and beyond. This paper outlines a strategic framework for the U.S. magnetic fusion program that builds substantially on the high-quality research and the strong scientific and technological basis that has been established during the past two decades.  相似文献   

9.
This report had its beginnings at the Third International Symposium on Toroidal Plasma Confinement held in Garching/Munich, Federal Republic of Germany, March 26–30, 1973. The American scientists who attended this conference agreed to assist in preparing a summary of the status of the field. Since that time, the authors of this report have had the opportunity to incorporate progress reported at the VI European Conference on Plasma Physics and Controlled Fusion, held in Moscow, U.S.S.R., from July 29 to August 3, 1973. The report has been available previously only as U.S. Atomic Energy Commission Report WASH-1295 (1974). It was the first comprehensive survey of the status of the tokamak fusion research concept, which was to become the cornerstone of the world fusion effort for the next quarter century. It provided the basis for the rapid buildup of the U.S. tokamak program during the latter half of the 1970's and is published now to archive its historical significance.  相似文献   

10.
Advances in high-current linear-accelerator technology since the design of the Fusion Materials Irradiation Test (FMIT) Facility have increased the attractiveness of a deuteriumlithium neutron source for fusion materials and technology testing. This paper discusses the conceptual design of such a source that is aimed at meeting the near-term requirements of a high-flux high-energy International Fusion Materials Irradiation Facility (IFMIF). The concept employs multiple accelerator modules providing deuteron beams to two liquid-lithium jet targets oriented at right angles. This beam/target geometry provides much larger test volumes than can be attained with a single beam and target and produces significant regions of low neutron-flux gradient. A preliminary beam-dynamics design has been obtained for a 250-mA reference accelerator module. Neutron-flux levels and irradiation volumes were calculated for a neutron source incorporating two such modules, and interaction of the beam with the lithium jet was studied using a thermal-hydraulic computer simulation. Approximate cost estimates are provided for a range of beam currents and a possible facility staging sequence is suggested.This work was supported by Los Alamos National Laboratory Program Development Funds under the auspices of the U.S. Department of Energy.Supported in part by an appointment to the U.S. DOE Fusion Energy Postdoctoral Research Program administered by Oak Ridge Associated Universities.  相似文献   

11.
Spherical Torus Pathway to Fusion Power   总被引:1,自引:0,他引:1  
Spherical Torus (ST) as an example of confinement concept innovation to enable a potentially attractive pathway to fusion power is discussed. Given the anticipated high performance in small size, the ST plasma could be used to stimulate innovation also in engineering, technology, and material combinations to provide a smarter, cheaper, faster pathway. This pathway could complement the mainline program based on the tokamak in making the desired progress in fusion energy sciences. The ST pathway could include a small VNS (Volume Neutron Source) with low fusion amplification (Q 1–2) for Fusion Energy Development (energy technology) and a small Pilot Plant with high Q (15–30) to practice Fusion Power Demonstration. Success in these steps also enhances the possibility for competitive non-electric applications of interest to society in time scales shorter than electric power generation. The scientific basis for these possibilities will be tested in the U.S. by the Proof of Principle experiment NSTX (National Spherical Torus Experiment) presently being built, and could be completed by a Proof of Performance and Optimization experiment such as a small DTST (Deuterium-Tritium Spherical Torus). Utilization of facilities and equipment already available in the U.S. would minimize the time and cost for these experiments and accelerate the approach to the stage of Fusion Energy Development.  相似文献   

12.
This panel was set up by the U.S. Department of Energy's Fusion Energy Sciences Advisory Committee in response to a request from the department to prepare a strategy for the study of burning fusion plasmas. Experimental study of a burning plasma has long been a goal of the U.S. science-based fusion energy program. There is an overwhelming consensus among fusion scientists that we are now ready scientifically, and have the full technical capability, to embark on this step. The fusion community is prepared to construct a facility that will allow us to produce this new plasma state in the laboratory, uncover the new physics associated with the fusion burn, and develop and test new technology essential for fusion power. Given this background, the panel has produced a strategy to enable the United States to proceed with this crucial next step in fusion energy science. The strategy was constructed with awareness that the burning plasma program is only one major component in a comprehensive development plan for fusion energy. A strong core science and technology program focused on fundamental understanding, confinement configuration optimization, and the development of plasma and fusion technologies essential to the realization of fusion energy. The core program will also be essential to the successful guidance and exploitation of the burning plasma program, providing the necessary knowledge base and scientific workforce.  相似文献   

13.
This is the final report of a panel set up by the U.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee (FESAC) in response to a charge letter from Dr. Raymond Orbach (Appendix A), asking FESAC to addressed the issue of workforce development in the U.S. fusion program. This report, submitted to FESAC March 29, 2004 and subsequently approved by them (Appendix B), presents FESAC's response to that charge.  相似文献   

14.
This report has been prepared in response to a request from the U.S. Department of Energy's (DOE) Office of Fusion Energy Sciences to consider possible alternatives on reduced cost options for next-step devices. A central focus of next-step devices is the study of burning plasmas, which explore the impact of substantial fusion energy production via the deuterium-tritium reaction.An important part of the U.S. Fusion Energy Sciences Program is its participation in the International Thermonuclear Experimental Reactor (ITER) program. Taking into account the international situation and U.S. domestic issues, the ITER process is exploring reduced-cost options to the present ITER device. A Special Working Group, reporting to the ITER Council, has been formed to explore these issues on behalf of the ITER Parties, i.e., the European Union, Russian Federation, Japan, and the United States. This report and its related activities will aid the United States in the international process.This report is the result of a broad-based U.S. community effort to discuss, debate, and work together on the crucial issues involved in considering next-step options. The main content of this report is based on three potential pathways identified at a broadly attended community Forum for Next-Step Fusion Experiments (University of Wisconsin, Madison, April 1998) organized principally by the University Fusion Association and by the work of the ITER Steering Committee—US (ISCUS) on reduced cost ITER options. The Madison Workshop was followed by a smaller Workshop on Next-Step Options (University of California, San Diego, June 1998) to focus on preparing this report. A broadly-announced Website was established to facilitate access to documents related to this process.  相似文献   

15.
Fusion facility safety and reliability/availability analyses require accurate component failure rate information to provide meaningful results. While fission reactor operating experience data may be adequate for some types of components, there are some data needs that are fusion-specific, such as tritium fueling and handling system information. This paper summarizes data analysis of tritium glovebox confinement systems and an air detritiation system from the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. These analyses benefit fusion design work by highlighting weak areas in designs to allow for modifications and upgrades, making future designs more robust. The TSTA results are generally smaller failure rates than the information from other industries, thus showing one of the benefits of gathering these fusion-specific data.This work was supported by the U.S. Department of Energy, Director of Energy Research, Office of Fusion Energy, under DOE Contract #DE-AC07-76ID01570.  相似文献   

16.
This is the final report of a panel set up by the U.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee (FESAC) in response to a charge letter from Dr. James Decker, Acting Director of the DOE Office of Science. In that letter, Dr. Decker asked FESAC to consider whether the Fusion Energy Sciences program should broaden its scope and activities to include non-electric applications of intermediate-term fusion devices. This report, submitted to FESAC July 31, 2003, and subsequently approved by them (Appendix B), presents FESAC's response to that charge.  相似文献   

17.
The Department of Energy (DOE) Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to address the topic of U.S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction. Given that there is expected to be a transition period of 3 to 5 years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to include the U.S. role in an interim period between the EDA and construction.This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirely. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.  相似文献   

18.
This report presents the results and recommendations of the deliberations of the U.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion Materials Research Program carried out during 1998. Metrics evaluated included evidence of recognition, publications per worker, new people attracted to the work and significance of recent accomplishments.  相似文献   

19.
This paper provides a technical summary of the first U.S. Plasma Jet Workshop, which was sponsored by the DOE Office of Fusion Energy Sciences and held at Los Alamos National Laboratory on January 24–25, 2008. The purpose of the workshop was to bring together members of the national plasma jet research community in order to discuss ongoing research and identify research needs and opportunities in plasma jets and their applications, which include fundamental studies of high energy density (HED) plasmas, magneto-inertial fusion (MIF), laboratory astrophysics, and disruption mitigation and fueling for magnetic confinement devices. Over the course of the workshop, about equal time was devoted to short technical talks and group discussions.  相似文献   

20.
The Innovative Confinement Concepts Workshop, ICC2002, provided a forum for presentations and exchange of ideas on the science and status of innovative concepts in the U.S. Fusion Energy Program. The workshop, held at the University of Maryland on January 22–24, 2002, included oral presentations addressing the important science and status of the concepts, posters focussed on details of the work, a skunkworks for novel ideas, and breakout sessions preparing for the July 2002 fusion energy Snowmass meeting. This report summarizes the oral presentations. A web site (https://wormhole.ucllnl.org/ICC2002/) has been established with the abstracts and many of the presentations, both oral and poster, from the workshop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号