首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(3):4421-4428
Novel CdS/BiVO4 nanocomposites were synthesized by simple solvothermal method. The as-prepared samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis diffuse reflectance spectra (DRS), Fourier transform infrared spectra (FT-IR) and photoluminescence (PL). In the nanocomposites, CdS particles were deposited on the surface of the BiVO4. The photocatalytic tests showed that the CdS/BiVO4 nanocomposites possessed a higher rate for degradation of malachite green (MG) than the pure BiVO4 under visible light irradiation. The 1.5-CdS/BiVO4 nanocomposite photocatalyst was found to degrade 98.3% of MG under visible light irradiation. Moreover, the photocatalytic mechanism of CdS/BiVO4 nanocomposites was also discussed. The results showed that the nanocomposite construction between CdS and BiVO4 played a very important role in their photocatalytic properties, which has the potential application in solving environmental pollution issues utilizing solar energy effectively.  相似文献   

2.
TiO2/BiVO4 composite photocatalysts with heterojunction structures were synthesized by the one-step microwave hydrothermal method. The physical and photophysical properties of the as-prepared photocatalysts were fully characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), UV–vis diffuse reflectance spectra, photoluminescence (PL) and BET surface area analysis. The photocatalytic activities were evaluated by the decolorization of rhodamine B under UV and simulated sun-light irradiation. The results reveal that the as-prepared TiO2/BiVO4 composites exhibit higher photocatalytic activities than pure BiVO4. The 20% TiO2/BiVO4 sample shows the best photocatalytic activity. The enhancement of photocatalytic activity is mainly attributed to the increasing separation rate of photogenerated charge carriers. The possible photocatalytic mechanism is discussed on the basis of the calculated energy band positions.  相似文献   

3.
《Ceramics International》2015,41(4):5999-6004
BiVO4/TiO2 nanocomposites were successfully synthesized by coupling the modified sol-gel method with hydrothermal method. The samples were physically characterized X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer, Emmett and Teller (BET)-specific surface area, UV–vis diffuse reflectance spectrophotometry, zeta potential, and photoluminescence techniques. The BiVO4/TiO2 nanocomposites exhibited good photocatalytic activity in degradation of methylene blue under simulated solar light irradiation. The photodegradation of methylene blue demonstrated that 0.5BiVO4/0.5TiO2 photocatalyst exhibited much enhanced photoactivity than pure BiVO4 and TiO2. Based on the obtained results, the as-prepare BiVO4/ TiO2 nanocomposite possessed great adsorptivity of methylene blue, extended light adsorption range, and efficient charge separation properties. Overall, this work could provide new insights into the fabrication of a BiVO4/TiO2 composite as high performance photocatalyst and promise as a solar light photocatalyst for dye wastewater treatment.  相似文献   

4.
《Ceramics International》2023,49(7):10455-10461
In this work, α-MnO2/BiVO4 nanocomposites with varying MnO2 contents (0–7 wt%) were successfully prepared via the simple chemical method. The structure, morphology, and optical properties of prepared nanocomposites were studied by various analytical techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–visible absorption spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic efficiency of α-MnO2/BiVO4 nanocomposites was studied via decomposition of rhodamine B (RhB) and tetracycline (TC) under exposure to visible light (λ ≥ 420 nm). Due to good structure and composite advantages, 5%MnO2/BiVO4 (MnBV-5) photocatalyst exhibited superior RhB and TC degradation efficiency to all other samples. In addition, the MnBV-5 photocatalyst showed good stability, and no apparent reduction in photocatalysis efficiency was noted after five testing cycles. Therefore, the MnO2/BiVO4 nanocomposite demonstrated a good potential for photocatalytic decomposition of new water contaminants.  相似文献   

5.
《Ceramics International》2017,43(12):8655-8663
The heterogeneous titanium oxide-reduced graphene oxide-silver (TiO2/RGO/Ag) nanocomposites were successfully prepared by incorporation of two dimensional (2D) RGO nanosheets and spherical silver nanoparticles (NPs) into the 1D TiO2 nanofibers. The novel TiO2/RGO/Ag nanocomposites were synthesized by loading TiO2 nanofibers, prepared via electrospinning technique, on the RGO/Ag platform. The resulting nanocomposites have been characterized using various techniques containing transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultra-violet-visible (UV–vis) spectroscopy. Microscopic studies clearly verified the existence of TiO2 nanofibers with Ag NPs on the surface of RGO sheet and formation of TiO2/RGO/Ag nanocomposites. Moreover, the results of UV–vis spectroscopy demonstrated that TiO2/RGO/Ag nanocomposites extended the light absorption spectrum toward the visible region and significantly enhanced the visible-light photocatalytic performance of the prepared samples on degradation of rhodamine B (Rh. B) as a model dye. It was found that, incorporation of 50 µl RGO/Ag into the TiO2 nanofibers lead to a maximum photocatalytic performance. Also, the improvement of the inactivation of Escherichia coli (E. coli) bacteria under visible-light irradiation was revealed by introduction of RGO/Ag into the TiO2 matrix. The significant enhancement in the photo and bio-activity of TiO2/RGO/Ag nanocomposites under visible-light irradiation can be ascribed to the RGO/Ag content by acting as electron traps in TiO2 band gap.  相似文献   

6.
Uniform immobilization of BiVO4 on silica fiber was successfully achieved via a combined alcohol-thermal and carbon nanofibers template route. The physicochemical properties of the obtained material were characterized by means of X-ray diffraction, field emission scanning electron microscopy, Raman spectrometer, Brunauer–Emmett–Teller apparatus, and ultraviolet–visible diffuse reflectance spectroscopy. Notably, the immobilized BiVO4 sample exhibited remarkable enhanced visible light photocatalytic degradation of an aqueous solution of rhodamine B (86.3% within 180 min), far exceeding that of the corresponding powder BiVO4 sample (32.5% within 180 min). It is expected that such unique immobilized BiVO4 material would possess many potential applications in photocatalysis.  相似文献   

7.
Porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures were synthesized by a template-free hydrothermal process at 160 °C for 24 h. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and UVvis spectroscopy. The photocatalytic activity of BiVO4 and BiVO4/Fe3O4 submicron structures were evaluated for the degradation of Rhodamine B (RhB) and methylene blue (MB) under visible light irradiation with and without the assistance of H2O2. According to the experimental results obtained, porous peanut-like BiVO4/Fe3O4 composite photocatalyst shows higher photocatalytic activity in the H2O2-assisted system under visible light irradiation compared to BiVO4. Recycling test on the BiVO4/Fe3O4 composite photocatalyst for the degradation of RhB under visible light irradiation indicates that the composite photocatalyst is stable in the H2O2-assisted system in five cycles. Therefore, this composite photocatalyst will be beneficial for efficient degradation of organic pollutants present in water and air under solar light.  相似文献   

8.
To enhance the photocatalytic activity of monoclinic scheelite (ms) BiVO4 for dye degradation, the heterostructured core (BiVO4)/shell (BiVO4:Eu3+) samples were synthesized by sol–gel method. The samples were characterized by UV–Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS). The results reveal that as-synthesized photocatalysts are characteristic of ms core/shell structure, responsive to visible light. The XPS spectra confirm that the doped Eu3+ mainly distributed in the outside layer of BiVO4 particle. The valence band (VB) spectra indicate the shell (BiVO4:Eu3+) exhibits a high carrier mobility. The core/shell photocatalysts showed higher photocatalytic activity than pure BiVO4 through degrading Rhodamine B and Methylene blue. The better performance of core/shell heterojunction mainly results from that the Eu3+ ions selectively present on shell layer, increasing the VB value of shell layer (forming a interface electric field with core) and carrier mobility. It is considered that the half-filled 7f–electron configuration of Eu3+ can improve the electron trapping and transfer. Besides, the low PL intensity and high SBET of BiVO4/BiVO4:Eu3+ contribute to enhanced photocatalytic performances.  相似文献   

9.
《Ceramics International》2021,47(21):29795-29806
In this paper, BiVO4-Cu2O nanocomposites have been synthesized by a mechano-thermal method with a controlled composition of Bi2O3, V2O5 and Cu2O contents. The effects of milling time, heat treatment temperature and composition on the structure and microstructure of the prepared samples were studied. The optical properties and photocatalytic performance of the samples under visible light irradiation were studied by Diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and dye degradation. The BiVO4 and Cu2O contents in the nanocomposite were changed and the effects on the structural stability and photocatalytic performance were studied. X-ray diffraction (XRD) patterns showed that both BiVO4 and Cu2O contents were effective on the synthesis and stability of the monoclinic phase of BiVO4. Field emission scanning electron microscopy (FESEM) micrographs indicated semi-spherical nanocomposite particles with an average particle size of 100 nm. The heterostructure at the interface between Cu2O and BiVO4 was shown by Transmission electron microscopy (TEM) and proved by X-ray photoelectron spectroscopy (XPS) spectra. DRS results indicated the minimum band gap energy of 2.12 eV for BiVO4-10 wt% of Cu2O with a 10 wt% excessive V2O5 content. The PL result has shown the lowest rate of the recombination of electron-holes for this sample. Also, the maximum degradation of 97% has been obtained for methylene blue (MB) by this sample after 240 min of being irradiated in visible light region. The photocatalytic mechanism was determined using scavengers. The kinetics of MB and methyl orange (MO) degradations was compared to study the effect of pH on the photocatalytic performance.  相似文献   

10.
Ag loaded TiO2 nanoplate array which grew on activated carbon fiber (ACF) was prepared in the present work. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–Vis diffuse reflectance spectra (DRS). The photocatalytic degradation of methylene blue (MB) was used to investigate the activity of the synthesized samples. Under both UV and visible light irradiation, the Ag loaded samples showed enhanced photocatalytic activity. Besides, the effect of the deposition dosage of Ag nanoparticles on the photocatalytic activity was also investigated. Under UV light irradiation, the Ag nanoparticles acted as electron traps, which enhanced electron–hole separation efficiency of TiO2. Under visible light irradiation, the Ag nanoparticles showed surface plasmon resonance, which induced the visible light responsive photocatalytic activity for the obtained samples.  相似文献   

11.
《Ceramics International》2020,46(5):5725-5732
2D heterojunction based on g-C3N4 nanosheets with other semiconductor nanosheets is a promising way to improve photocatalytic hydrogen evolution (PHE) activity over g-C3N4. However, current 2D heterojunction based on g-C3N4 are unsatisfactory due to their insufficient absorption of visible light and inefficient charge separation. In this work, Ag/TiO2/g-C3N4 nanocomposites based on 2D heterojunction coupling with Ag surface plasmon resonance (SPR) were synthesized by a method combining facile wetness impregnation calcination. The PHE activity of Ag/TiO2/g-C3N4 nanocomposites is attributed to the TiO2/g-C3N4 2D heterojunction and bare g-C3N4 nanosheet under visible light irradiation, indicating a cooperative effect between Ag and TiO2/g-C3N4 2D heterojunction. As a result of SPR effect, the composites strongly absorb visible light. In addition, the oscillating hot electrons from Ag can easily transfer to 2D heterojunction. This synergistic effect lead to sufficient visible light absorption and efficient charge separation of 2D heterojunction, which improved the PHE activity of g-C3N4. This work indicates that loading metal nanoparticles on 2D heterojunction as metal SPR-2D heterojunction nanocomposites may be a potential method for harvesting visible light for PHE.  相似文献   

12.
《Ceramics International》2016,42(14):15247-15252
A hybrid material of reduced graphene oxide (RGO) sheets decorated with CdS-TiO2 NPs was prepared through a facile one-pot hydrothermal method. The assembly of CdS-TiO2 nanoparticles (NPs) on RGO sheets was in-situ produced. As-synthesized nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy disperse X-ray spectrum (EDS), fourier transform infrared spectroscopy (FTIR), and photoluminescence spectroscopy (PL). The obtained nanocomposites exhibited a good photocatalytic activity for the visible-light-induced decomposition of methylene blue (MB) dye and hydrolysis of ammonia borane. The results showed that by incorporation of CdS and TiO2 NPs on graphene oxide sheets the photocatalytic efficiency was enhanced. The significant enhancement in the photocatalytic activity of CdS-TiO2/RGO nanocomposites under visible light irradiation can be ascribed to the effect of CdS by acting as electron traps in TiO2 band gap. Reduced graphene oxide worked as the adsorbent, electron acceptor and a photo-sensitizer to efficiently enhance the dye photo decomposition. Such nanocomposite photocatalyst might find potential application in a wide range of fields, including hydrogen energy generation, air purification, and wastewater treatment.  相似文献   

13.
《Ceramics International》2020,46(9):13433-13441
In the present work, BiVO4 microspheres were deposited on TiO2 NTAs via the solvothermal method using urea as the mineralizer. The binary heterojunction formation significantly enhanced the solar response region and intensity, and the electron transfer path was built at the interface of two semiconductors, which was the main reason for the enhanced photoelectrochemical and photocatalytic performances. The S-2 electrode prepared with urea concentration of 2 mol/L displayed the high visible light photocurrent of 73.76 μA/cm2 and photovoltage of −0.30 V. Furthermore, the S-2 photocatalyst also showed excellent photocatalytic decoloration ability of MO, RhB and MB dyes, and the corresponding decomposition efficiencies were 55.82%, 41.62% and 89.90% under solar irradiation. Except for the organic dyes, Cr(VI) ions also could be reduced into Cr(III), and the photocatalytic efficiency achieved 74.05% after 3 h solar irradiation. The active group and photocatalytic mechanism were proposed to illuminate the essential reason. The experimental results indicated that the novel BiVO4/TiO2 NTAs with binary heterojunction are attractive photocatalysts for the dyeing and printing water treatment.  相似文献   

14.
《Ceramics International》2016,42(16):18257-18263
Novel photocatalysts based on silver (Ag), TiO2, and graphene were successfully synthesized by microwave-assisted hydrothermal method. The prepared photocatalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) specific surface area analysis, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The influence of silver loading and graphene incorporation on photocatalytic hydrogen (H2) production of as-prepared samples was investigated in methanolic aqueous solution under visible light irradiation (λ≥420 nm). The results showed that Ag–TiO2/graphene composite had appreciably enhanced photocatalytic H2 production performance under visible light illumination compared to pure TiO2, Ag–TiO2 and TiO2/graphene samples. The enhanced photocatalytic hydrogen production activity of Ag–TiO2/graphene composite under visible light irradiation could be attributed to increased visible light absorption, reduced recombination of photogenerated charge carriers and high specific surface area. This novel study provides more insight for the development of novel visible light responsive TiO2− graphene based photocatalysts for energy applications.  相似文献   

15.
Graphene/carbon composite nanofibers (CCNFs) with attached TiO2 nanoparticles (TiO2–CCNF) were prepared, and their photocatalytic degradation ability under visible light irradiation was assessed. They were characterized using scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible diffuse spectroscopy. The results suggest that the presence of graphene embedded in the composite fibers prevents TiO2 particle agglomeration and aids the uniform dispersion of TiO2 on the fibers. In the photodegradation of methylene blue, a significant increase in the reaction rate was observed with TiO2–CCNF materials under visible light. This increase is due to the high migration efficiency of photoinduced electrons and the inhibition of charge–carrier recombination due to the electronic interaction between TiO2 and graphene. The TiO2–CCNF materials could be used for multiple degradation cycles without a decrease in photocatalytic activity.  相似文献   

16.
SnO2 doped TiO2 electropsun nanofiber photocatalysts were successfully prepared by means of electrospinning process. The surface morphology, structure and optical properties of the resultant products were characterized by field-emission electron microscopy (FE-SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), UV–vis spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. The utilized physiochemical analyses indicated that the introduced SnO2 doped TiO2 nanofibers have a smooth surface and uniform diameters along their lengths. The photocatalytic performance of the composite nanofibers was tested for degradation of methylene blue (MB) and methyl orange (MO) dye solution under ultraviolet (UV) irradiation. Under the UV irradiation, the photocatalytic reaction rate in case of utilizing SnO2-doped TiO2 nanofibers was rapidly increased than that of the pristine TiO2 nanofibers. Overall, this study demonstrates cheap, stable and effective material for photocatalytic degradation at room temperature.  相似文献   

17.
Titanium dioxide nanoparticles were modified by polyaniline (PANI) using ‘in situ’ chemical oxidative polymerization method in hydrochloric acid solutions. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectrum (XPS) and UV–vis spectra were carried out to characterize the composites with different PANI contents. The photocatalytic degradation of phenol was chosen as a model reaction to evaluate the photocatalytic activities of the modified catalysts. Results show that TiO2 nanoparticles are deposited by PANI to mitigate TiO2 particles agglomeration. The modification does not alter the crystalline structure of the TiO2 nanoparticles according to the X-ray diffraction patterns. UV–vis spectra reveal that PANI-modified TiO2 composites show stronger absorption than neat TiO2 under the whole range of visible light. The resulting PANI-modified TiO2 composites exhibit significantly higher photocatalytic activity than that of neat TiO2 on degradation of phenol aqueous solution under visible light irradiation (λ ≥ 400 nm). An optimum of the synergetic effect is found for an initial molar ratio of aniline to TiO2 equal to 1/100.  相似文献   

18.
Decahedral BiVO4 was successfully synthesized with Tween-80 as a template by the microwave hydrothermal method. The effects of hydrothermal temperature and Tween-80 on crystal phase and morphology of the obtained BiVO4 were investigated. The crystal phase and morphology were characterized by X-ray diffraction, field emission scanning electron microscopy and UV–vis diffuse reflectance spectroscopy. The results indicated that the as-prepared decahedral BiVO4 was monoclinic. The photocatalytic behavior for methylene blue (MB) degradation was enhanced with the assistance of an appropriate amount of hydrogen peroxide (H2O2) under visible light irradiation. The photocatalytic tests indicated that the photocatalytic efficiency of decahedral BiVO4 synthesized at 180 °C was 63.5%. However, BiVO4 sample synthesized at 160 °C showed the highest photocatalytic degradation rate, up to 81.6%, due to its small size and crystal defects.  相似文献   

19.
A pulse current deposition technique was adopted to construct highly dispersed Ag nanoparticles on TiO2 nanotube arrays which were prepared by the electrochemical anodization. The morphology, crystallinity, elemental composition, and UV-vis absorption of Ag/TiO2 nanotube arrays were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). In particular, the photoelectrochemical properties and photoelectrocatalytic activity under UV light irradiation and the photocatalytic activity under visible light irradiation for newly synthesized Ag/TiO2 nanotube arrays were investigated. The maximum incident photon to charge carrier efficiency (IPCE) value of Ag/TiO2 nanotube arrays was 51%, much higher than that of pure TiO2 nanotube arrays. Ag/TiO2 nanotube arrays exhibited higher photocatalytic activities than the pure TiO2 nanotube arrays under both UV and visible light irradiation. The photoelectrocatalytic activity of Ag/TiO2 nanotube arrays under UV light irradiation was 1.6-fold enhancement compared with pure TiO2 nanotube arrays. This approach can be used in synthesizing various metal-loaded nanotube arrays materials.  相似文献   

20.
In recent years, the excessive use of antibiotics has become a serious problem for human health. BiVO4 regarded as one of the most promising visible-light-driven photocatalysts was used to degrade the antibiotics. In this paper, we fabricated Bi/BiVO4 plasmonic photocatalysts which enhanced the photocatalytic activity of BiVO4 for degradation of tetracycline (TC) antibiotic. The Bi/BiVO4 photocatalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and high-resolution transmission electron microscopy. In addition, the photocatalytic experiment results show that the 0.04-Bi/BiVO4 sample has the best photocatalytic activity for 2 times than the pure BiVO4 photocatalyst. The cycle experiments, after four repetitions of the experiments, showed the sample still maintained a high photocatalytic activity. Finally, the photocatalytic reaction mechanism was also studied by free radical capture experiments and electron paramagnetic resonance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号