首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
《Ceramics International》2016,42(14):15623-15633
Li-rich layered oxides are the most promising cathode candidate for new generation rechargeable lithium-ion batteries. In this work, La2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials were fabricated via a combined method of sol-gel and wet chemical processes. The structural and morphological characterizations of the materials demonstrate that a thin layer of La2O3 is uniformly covered on the surface of Li1.2Mn0.54Ni0.13Co0.13O2 particles, and the coating of La2O3 has no obvious effect on the crystal structure of Li-rich oxide. The electrochemical performance of La2O3-coated Li-rich cathodes including specific capacity, cycling stability and rate capability has been significantly improved with the coating of La2O3. The Li1.2Mn0.54Ni0.13Co0.13O2 coated with 2.5 wt% La2O3 exhibits the highest discharge capacity, improved cycling stability and reduced charge transfer resistance, delivering a large discharge capacity of 276.9 mAh g−1 in the 1st cycle and a high capacity retention of 71% (201.4 mAh g−1) after 100 cycles. The optimal rate capability of the materials is observed at the coating level of 1.5 wt% La2O3 such that the material exhibits the highest discharge capacity of 90.2 mAh g−1 at 5 C. The surface coating of La2O3 can effectively facilitate Li+ interfacial diffusion, reduce the structural change and secondary reactions between cathode materials and electrolyte during the charge-discharge process, and thus induce the great enhancement in the electrochemical properties of the Li1.2Mn0.54Ni0.13Co0.13O2 materials.  相似文献   

2.
《Ceramics International》2016,42(4):5397-5402
Lithium (Li)-rich layered oxides are considered promising cathode materials for Li-ion batteries because of their favorable properties. Here, we report our recent finding in the novel oxide, aluminum fluoride (AlF3)-modified Li1.2Mn0.54Ni0.13Co0.13O2 (LMNCAF), which was synthesized via a facile, cost-effective and readily scalable solid-state reaction. LMNCAF possess an F and Al co-doped core structure with a LiF nano-coating on its surface which leads to considerably enhancement in the electrochemical performance of the oxide. The initial discharge capacity (at 0.05 C) increased from 212 mA h g−1 for Li1.2Mn0.54Ni0.13Co0.13O2 to 291 mA h g−1 for LMNCAF. A much higher discharge capacity of 211 mA h g−1 was obtained for LMNCAF after 99 charge/discharge cycles at 0.2 C compared with that of Li1.2Mn0.54Ni0.13Co0.13O2 (160 mA h g−1). Our preliminary results suggest that AlF3 modification is an effective strategy to tailor the physicochemical and electrochemical properties of Li-rich layered oxides.  相似文献   

3.
《Ceramics International》2017,43(6):5267-5273
SmPO4 coated Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials were prepared by the precipitation method and calcined at 450 °C. The crystal structures and electrochemical properties of the pristine and coated samples are studied by X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, electron diffraction spectroscopy, galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). It has been found that the electrochemical performances of the Li-rich cathode material have been substantially improved by SmPO4 surface coating. Especially, the 2 wt% SmPO4-coated sample demonstrates the best cycling performance, with capacity retention of 88.4% at 1 C rate after 100 cycles, which is much better than that of 72.3% in the pristine sample. The improved electrochemical properties have been ascribed to the SmPO4 coating layer, which not only stabilizes the cathode structure by decreasing the loss of oxygen, but also protects the Li-rich cathode material from side reaction with the electrolyte and increases the Li+ migration rate at the cathode interface.  相似文献   

4.
The effects of ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) based electrolyte on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 have been investigated. The results of thermogravimetric analysis (TGA), flammability and differential scanning calorimetry (DSC) tests indicate that Py14TFSI addition enhances thermal stability of the electrolyte and reduces the safety concern of Li-ion battery. Electrochemical measurements demonstrate that the cathode material shows good electrochemical performance in Py14TFSI-added electrolyte. The cathode material is able to deliver high initial discharge capacity of 250 mAh g?1 in electrolyte with Py14TFSI content up to 80% at 0.1 C. In addition, the cathode material delivers less initial irreversible capacity loss and higher initial coulombic efficiency in electrolyte with higher Py14TFSI content. However, increasing Py14TFSI content in the electrolyte affects rate capability of the cathode material distinctively. With 60% Py14TFSI-added electrolyte, Li[Li0.2Mn0.54Ni0.13Co0.13]O2 shows better cycling stability with a capacity retention of 84.4% after 150 cycles at 1.0 C than that in IL free electrolyte. The superior cycling performance of the cathode material cycled in Py14TFSI-added electrolyte is mainly ascribed to the formation of stable electrode/electrolyte interfaces, based on the results of scanning electron microscopy (SEM), X-ray photoelectron spectra (XPS) and electrochemical impedance spectroscopy (EIS) investigations.  相似文献   

5.
Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as a cathode material for Li-ion battery has been successfully prepared by co-precipitation (CP), sol–gel (SG) and sucrose combustion (SC) methods. The prepared materials were characterized by XRD, SEM, BET and electrochemical measurements. The XRD result shows that the Li[Li0.2Mn0.54Ni0.13Co0.13]O2 materials prepared by different methods all form a pure phase with good crystallinity. SEM images and BET data present that the SC-material exhibited the smallest particle size (ca. 0.1 μm) and the highest surface area (7.4635 m2 g−1). The tap density of SC-material is lower than that of CP- and SG-materials. The result of rate performance tests indicates that the SC-material showed the best rate capability with the highest discharge capacity of 178 mAh g−1 at 5.0 C, followed by SG-material and then CP-material. However, the cycling stability of SC-material tested at 0.1 and 0.5 C is relatively poor as compared to that of SG-material and CP-material. The result of EIS measurements reveals that large surface area and small particle size of the SC-electrode result in more SEI layer formation because of the increased side reactions with the electrolyte during cycling, which deteriorates the electrode/electrolyte interface and thus leads to the faster capacity fading of the SC-material.  相似文献   

6.
《Ceramics International》2017,43(17):14836-14841
Molybdenum doping is introduced to improve the electrochemical performance of lithium-rich manganese-based cathode material. X-ray diffraction (XRD) results illustrate that the crystallographic parameters a, c and lattice volume V become larger with the increase of Mo content. The scanning electron microscope (SEM) shows that the molybdenum substitution increases the crystallinity of the primary particles. When evaluated as cathode material, the as-prepared Li[Li0.2Mn0.54-x/3Ni0.13-x/3Co0.13-x/3Mox]O2 (x = 0.007) delivers a discharge capacity of 155.5 mA h g−1 at 5 C (1 C = 250 mA g−1) and exhibits the capacity retention of 81.8% at 1 C after 200 cycles. The results of cyclic voltammetry (CV) and electronic impedance spectroscopy (EIS) tests reflect that the molybdenum substitution is able to significantly reduce the electrode polarization and lower the charge-transfer resistance. Within appropriate amount of Mo doping, the lithium ion diffusion coefficient of the material can reach to 8.92 × 10–15 cm2 s−1, which is ~ 30 times higher than that of pristine materials (2.65 × 10–16 cm2 s−1).  相似文献   

7.
《Ceramics International》2019,45(16):20016-20021
Li-rich Mn-based layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 (LMNCO) has received great interest due to its high discharge capacity. However, the fast capacity attenuation seriously hinders its wide application. LMNCO particles are synthesized via a co-precipitation method. To enhance the cycle stability, (Ni0.4Co0.2Mn0.4)1-xTix(OH)2+2x surface layer is deposited on LMNCO precursor particles by a second co-precipitation process. Due to the mutual diffusion of elements during sintering, Ti is distributed in the 2–3 μm shell of particles. The cells are cycled in a voltage window of 2.0–4.8 V at 0.5C. After 200 cycles, LMNCO exhibits a capacity retention of 43%, and LMNCO particles have been pulverized by the cycle process. In contrast, the structural integrity of coated particles is maintained, and therefore the cycle stability is evidently improved.  相似文献   

8.
Over-lithiated oxide has been attracting enormous attention due to its high work voltage and high specific capacity. However, the bottlenecks of low initial coulombic efficiency and voltage decay block its industrial application. In this paper, nano-sized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 was successfully synthesized by a mechano-chemical activation-assisted microwave technique, in which Mn-Co-Ni-based micro spherical precursor by conventional co-precipitation method was ball milled with Li2CO3 as lithium source and alcohol as dispersant into nano size and then sintered by microwave to obtain the final product. The as-prepared sample sintered for 30 min exhibited a superior electrochemical performance: almost no capacity fading after 100 cycles at 0.1 C. The rate performance was also improved significantly and the one sintered for 30 min delivered a discharge capacity of 239, 228, 215, 193 mA h g?1 at 0.1 C, 0.2 C, 0.5 C and 1 C respectively. The distinctive electrochemical performance benefits from the uniform nano-sized particle distribution and good electrode kinetics. It is concluded that such mechano-chemical activation-assisted microwave technique featuring high time and energy efficiency can be considered as one of the dominant routes to realize the industrialization of over-lithiated oxide.  相似文献   

9.
Recently, there have been many reports on efforts to improve the rate capability and discharge capacity of lithium secondary batteries in order to facilitate their use for hybrid electric vehicles and electric power tools. In the present work, we present a ZrO2-coated Li[Li1/6Mn1/2Co1/6Ni1/6]O2. The bare Li[Li1/6Mn1/2Co1/6Ni1/6]O2 shows a high initial discharge capacity of 224 mAh g−1 at a 0.2 C rate. Owing to the stability of ZrO2, it was possible to enhance the rate capability and cyclability. After 1 wt% ZrO2 coating, the ZrO2-coated Li[Li1/6Mn1/2Co1/6Ni1/6]O2 showed a high discharge capacity of 115 mAh g−1 after 50 cycles under a 6 C rate, whereas the bare Li[Li1/6Mn1/2Co1/6Ni1/6]O2 showed a discharge capacity of only 40 mAh g−1 and very poor cyclability under the same conditions. Based on results of XRD and EIS measurements, it was found that the ZrO2 suppressed impedance growth at the interface between the electrodes and electrolyte and prevented collapse of the layered hexagonal structure.  相似文献   

10.
《Ceramics International》2020,46(17):27010-27020
In this work, hierarchical flower-like Li1.2Ni0.13Co0.13Mn0.54O2 (LNCM) with exposed {010} planes assembled and double-sphere Li1.2Ni0.13Co0.13Mn0.54O2 without {010} planes as a comparison were successfully synthesized via a simple solvothermal method. The diffusion of Li+ could be enhanced in the flower-like LNCM with exposed {010} active planes, and the cathode exhibits a superior electrochemical performance especially in long-term cycling stability even at high current densities. The initial discharge capacity of this sample is 274 mA h g−1 at 0.1C (25 mA g−1), with corresponding initial coulombic efficiencies of 77%. Especially, the capacity retention reaches up to 98% at 1250 mA g−1 current density after 100 cycles. By comparing with other LNCM materials reported recently, our optimal cathode has a pretty outstanding electrochemical performance, which is promising for the next generation lithium ion batteries.  相似文献   

11.
《Ceramics International》2007,33(6):1093-1098
Spherical and fine-sized Li(Ni1/3Co1/3Mn1/3)O2 particles were prepared using spray pyrolysis. Precursor particles with mixed Mn2O3, Co3O4 and NiO compositions were prepared using spray pyrolysis from aqueous and polymeric precursor solutions. The precursor particles prepared from the aqueous solution had hollow and porous morphologies. The precursor particles prepared from the polymeric precursor solution with citric acid and ethylene glycol were spherical in shape and had filled morphologies. The spherical precursor particles with filled morphologies formed spherical, fine-sized Li(Ni1/3Co1/3Mn1/3)O2 particles with filled morphologies after post-treatment with LiOH. The mean crystallite sizes of the Li(Ni1/3Co1/3Mn1/3)O2 particles prepared from spray solutions with and without lithium at the post-treatment temperature of 800 °C were 56 and 31 nm, respectively. The initial discharge capacities of the Li(Ni1/3Co1/3Mn1/3)O2 particles prepared using spray pyrolysis from spray solutions with and without lithium were 178 and 181 mAh g−1, respectively, after a post-treatment temperature of 800 °C.  相似文献   

12.
《Ceramics International》2017,43(12):8800-8808
The Cr doped layered-spinel composite cathode material Li1.1Ni0.235Mn0.735Cr0.03O2.3 was synthesized and coated with different content of Li4Ti5O12 by a sol–gel method. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effect of Li4Ti5O12 coatings on the electrochemical performance of the pristine material was evaluated from charge/discharge cycles, rate performance, and electrochemical impedance spectroscopy (EIS). The XRD results show that the lattice crystal and the content of spinel phase have been increased in the Li1.1Ni0.235Mn0.735Cr0.03O2.3 materials after Li4Ti5O12 coating. The results from TEM and selected area electron diffraction (SAED) indicate that the Li4Ti5O12 coating assumes a spinel structure on the Li1.1Ni0.235Mn0.735Cr0.03O2.3. The discharge capacities, cycling and rate performances of the Li1.1Ni0.235Mn0.735Cr0.03O2.3 materials in the first cycle are improved with the addition of Li4Ti5O12. Li1.1Ni0.235Mn0.735Cr0.03O2.3 coated with 3 wt% Li4Ti5O12 shows the highest discharge capacity (271.7 mA h g−1), highest capacity retention (99.4% for 100 cycles), and best rate capability (132 mA h g−1 at 10 C). EIS result indicates that the resistance of Li1.1Ni0.235Mn0.735Cr0.03O2.3 electrode decreases with the addition of Li4Ti5O12. The enhanced electrochemical performance can be ascribed to the increased spinel content, lower resistance and the enhanced lithium-ion diffusion kinetics.  相似文献   

13.
《Ceramics International》2017,43(4):3866-3872
Key issues including poor rate capability and limited cycle life span should be addressed for the extended application of LiNi0.5Co0.2Mn0.3O2 cathode. The suppressed Li+/Ni2+ site exchange, enlarged LiO2 inter-slab space and reduced impedance, which could facilitate the structure stability, were achieved by controlled Niobium (Nb) doping and contributed to enhanced performance even at elevated temperature (55 °C). The detailed role of the doped Nb was investigated thoroughly and systematically with the help of XRD, SEM, XPS and related electrochemical tests. The full and accurate results demonstrate that the Li(Ni0.5Co0.2Mn0.3)0.99Nb0.01O2 sample with appropriate Nb doping amount possess high capacity retention of 93.77% after 100 cycles at 1.0 C and improved rate performance with 125.5 mA h g−1 at 5.0 C, which are much better than that of the LiNi0.5Co0.2Mn0.3O2. Moreover, at high temperature of 55 °C, Nb doping shows more remarkable effect on stabilizing the structure and 88.63% of the initial reversible capacity could be retained, which is ~20% higher than the LiNi0.5Co0.2Mn0.3O2. This study intensively determines that controlled Nb doping could be effectively maintain the structure stability of advanced LiNi0.5Co0.2Mn0.3O2 cathode and promote the development of high energy density lithium ion batteries.  相似文献   

14.
Layered Li[Li0.2Ni0.2Mn0.6]O2 powder was modified by coating its surface with amorphous Al(OH)3. Energy dispersive spectroscopy (EDS) showed that nano-sized Al(OH)3 powders were homogeneously dispersed in the parent Li[Li0.2Ni0.2Mn0.6]O2 powders. Al(OH)3 coated Li[Li0.2Ni0.2Mn0.6]O2 exhibited an greater retention capacity at higher rates compared to uncoated Li[Li0.2Ni0.2Mn0.6]O2. The low area specific impedance (ASI) value of the Al(OH)3 is the major factor for its higher rate performance. The 1.4 wt.% Al(OH)3 coated sample had an impedance of 41 Ω cm2 while uncoated Li[Li0.2Ni0.2Mn0.6]O2 had a 57 Ω cm2 at 30-80% state of charge. Electrochemical impedance spectroscopy (EIS) also showed that the Al(OH)3 coated sample had a lower charge transfer resistance (Rct) than the uncoated sample. Differential scanning calorimetry (DSC) analysis showed that Al(OH)3 coating improved the thermal stability. Al(OH)3 coating increased the onset temperature of thermal decomposition and reduced the amount of heat for the exothermic peak.  相似文献   

15.
A Li[Ni0.4Co0.3Mn0.3]O2 cathode was modified by applying a La2/3−XLi3XTiO3 (LLT) coating. Transmission electron microscope (TEM) images reveal that the coating layer consists of nanoparticles. The coated cathode demonstrated an enhanced rate capability, discharge capacity, and cyclic performance than the uncoated cathode. However, the influence of the coating upon these electrochemical properties is highly dependent upon the composition of the LLT coating layer. Coating layers having high La and low Li contents, such as La0.67TiO3, effectively improved the rate capability of the cathode. However, coating layers with a low La and high Li content greatly enhanced the discharge capacity of the cathode under high cut-off voltage (4.8 V) conditions. Overall, the thermal stability of the Li[Ni0.4Co0.3Mn0.3]O2 electrode was improved by the LLT coating. Storage tests confirmed that the La2/3−XLi3XTiO3 coating dramatically suppressed the dissolution of transition metals into the electrolyte.  相似文献   

16.
《Ceramics International》2017,43(2):2320-2324
Li-rich Mn-based cathode materials (Li1.2Ni0.2Mn0.6O2) have been synthesized by a polyvinyl alcohol (PVA)-assisted sol-gel method. The influence of PVA content on the structure and electrochemical performance of Li1.2Ni0.2Mn0.6O2 has been investigated respectively. XRD results of the Li1.2Ni0.2Mn0.6O2 powders show that they exhibit similar XRD patterns as those of Li-rich Mn-based cathode materials, and the crystalline nature of the layered compound are improved by the presence of PVA. Physical characterizations indicate that the as-synthesized oxide is composed of uniform and separated particles compared to the larged aggregated ones of the product synthesized under the same condition but without PVA. As cathode for lithium ion battery, the material synthesized with 10% PVA exhibits not only a relatively high discharge capacity of 254.2 mA h g−1, but also excellent rate performance and good cycling performance. EIS results show that the material synthesized with PVA decreases the charge-transfer resistance and enhances the reaction kinetics, which is considered to be the major factor for higher rate performance.  相似文献   

17.
The layered Li[Li0.07Ni0.1Co0.6Mn0.23]O2 materials were synthesized by sol-gel method with glycine or citric acid as chelating agent. The prepared materials were characterized by means of XRD, SEM and Raman spectroscopy. Li/Li[Li0.07Ni0.1Co0.6Mn0.23]O2 cells were assembled and subjected to charge-discharge studies at different C rates, viz 0.2, 1, 2 and 4 C. Although the samples showed less discharge capacity at 4 C rate the fade in capacity per cycle is lesser than that of capacity fade at 0.2 C rate. The citric acid assisted sample is found to be superior in terms of discharge capacity, capacity retention rate and also in thermal stability to that of sample prepared with glycine as chelating agent.  相似文献   

18.
A novel Li[Ni0.67Co0.15Mn0.18]O2 cathode material encapsulated completely within a concentration-gradient shell was successfully synthesized via co-precipitation. The Li[Ni0.67Co0.15Mn0.18]O2 has a core of Li[Ni0.8Co0.15Mn0.05]O2 that is rich in Ni, a concentration-gradient shell having decreasing Ni concentration and increasing Mn concentration toward the particle surface, and a stable outer-layer of Li[Ni0.57Co0.15Mn0.28]O2. The electrochemical and thermal properties of the material were investigated and compared to those of the core Li[Ni0.8Co0.15Mn0.05]O2 material alone. The discharge capacity of the concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 electrode increased with increasing upper cutoff voltage to 4.5 V, and cells with this cathode material delivered a very high capacity, 213 mAh/g, with excellent cycling stability even at 55 °C. The enhanced thermal and lithium intercalation stability of the Li[Ni0.67Co0.15Mn0.18]O2 was attributed to the gradual increase in tetravalent Mn concentration and decrease in Ni concentration in the concentration-gradient shell layer.  相似文献   

19.
Layered Li0.7[M1/6Mn5/6]O2 (M=Li, Ni) was synthesized using a sol-gel method. P2-Na0.7[M1/6Mn5/6]O2 precursor was first synthesized by a sol-gel method, and then O2-Li0.7[M1/6Mn5/6]O2 was prepared by an ion exchange of Li for Na in P2-Na0.7[M1/6Mn5/6]O2 precursor. From charge/discharge curves, it was seen that Li0.7[Li1/6Mn5/6]O2 has two plateaus similar to those observed from a spinel structure, but Li0.7[Ni1/6Mn5/6]O2 holds a single plateau as observed from a typical layered structure. It was considered that Li0.7[Li1/6Mn5/6]O2 undergoes a phase transformation from layered to spinel structure during the charge/discharge cycle, but Li0.7[Ni1/6Mn5/6]O2 maintains O2-layered structure after the cycles. Li0.7[Ni1/6Mn5/6]O2 was higher in discharge capacity and retention rate than Li0.7[Li1/6Mn5/6]O2.  相似文献   

20.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号