首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2017,43(15):12280-12286
SiC ceramics, for the first time, were toughened with nano scale carbon nanotubes (CNTs) buckypapers and micro scale carbon fibers within this work. The CNTs buckypapers were alternately laminated with carbon fiber fabrics (Cfb) to a preform by needle punched in Z-direction. Afterwards, the buckypaper-Cfb/SiC composites were obtained by infiltrating of SiC into the as-laminated preform via chemical vapor infiltration (CVI). Some effects of different lamination thickness and CVI times on the mechanical properties of the composites were investigated. Results showed that the maximum flexural strength and work of fracture of the buckypaper-Cfb/SiC composites reached 262.4 MPa and 4.15 kJ m−2, respectively, when the thickness reached about 3.50 mm. Compared to Cfb/SiC composites without buckypapers, the strength and work of fracture of the buckypaper-Cfb/SiC composites increased by 19.8% and 111.7%, respectively. Densified composites can be obtained after CVI for 8 times. A main factor affecting the mechanical properties of buckypaper-Cfb/SiC composites is the degree of densification. Introducing nano scale CNTs and micro scale carbon fibers reaches a multiscale co-toughening effect. Meanwhile, a sandwich structure ceramic matrix composite with high-CNT concentration was obtained in this work.  相似文献   

2.
A low-cost carbon/silicon carbide (C/SiC) composite was manufactured by phenolic resin impregnation–pyrolysis combined with liquid silicon infiltration. The carbon fiber preform was prepared by three-dimensional needling. A carbon/carbon composite with a density of 1.22 g/cm3 after only one impregnation–pyrolysis cycle was achieved by using hot-pressing curing. The density of the final C/SiC was 2.10 g/cm3 with a porosity of 4.50% and SiC-content of 45.73%. The C/SiC composite had a high thermal conductivity of 48.72 W/(m K) perpendicular to the friction surface and demonstrated good friction and wear properties. The static and average dynamic friction coefficients were 0.68 and 0.32 (at a braking velocity of 28 m/s). The weight wear rates of the rotating disk and stationary disk were respectively 7.71 and 5.60 mg/cycle with linear wear rates, 1.67 and 1.22 μm/cycle, at a braking velocity of 28 m/s.  相似文献   

3.
《Ceramics International》2016,42(4):4984-4992
The nanocomposite was produced via phenolic resin infiltrating into a carbon nanotube (CNT) buckypaper preform containing B4C fillers and amorphous Si particles followed by an in-situ reaction between resin-derived carbon and Si to form SiC matrix. The buckypaper preform combined with the in-situ reaction avoided the phase segregation and increased significantly the volume fraction of CNTs. The nanocomposites prepared by this new process were dense with the open porosities less than 6%. A suitable CNT–SiC bonding was achieved by creating a B4C modified interphase layer between CNTs and SiC. The hardness increased from 2.83 to 8.58 GPa, and the indentation fracture toughness was estimated to increase from 2.80 to 9.96 MPa m1/2, respectively, by the reinforcing effect of B4C. These nanocomposites became much more electrically conductive with high loading level of CNTs. The in-plane electrical resistivity decreased from 124 to 74.4 μΩ m by introducing B4C fillers.  相似文献   

4.
To protect carbon/carbon (C/C) composites against oxidation, a mullite coating was prepared on SiC precoated C/C composites by a hydrothermal electrophoretic deposition process. The phase composition, microstructure and oxidation resistance of the prepared mullite/SiC coatings were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to achieve crack-free mullite coatings. The mullite/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 322 h with a weight loss rate of only 4.89 × 10?4 g/cm2 h. The failure of the multi-layer coatings is considered to be caused by the volatilization of silicate glass layer, the formation of microholes and microcracks on the coating surface and the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 111.11 kJ/mol.  相似文献   

5.
《Ceramics International》2017,43(5):4062-4067
The resorcinol-formaldehyde (RF) gel-casting system is employed for the first time to fabricate a hierarchical porous B4C/C preform, which was subsequently used for the fabrication of reaction bonded boron carbide (RBBC) composites via a liquid silicon infiltration process. The effect of the carbon content and carbon structures of this perform on the microstructures and mechanical properties of B4C/C preform and the resultant RBBC composites is reported. The B4C/C preform (16 wt% carbon) exhibit a strength of 34±1 MPa. The obtained RBBC composites shown uniform microstructure is consisted of SiC particles bonded boron carbide scaffold and an interpenetrating residual silicon phase. The Vickers hardness, flexural strength and fracture toughness of the RBBC composites (16 wt% carbon) are 24 GPa, 452 MPa and 4.32 MPa m1/2, respectively.  相似文献   

6.
A high performance and low cost C/C–SiC composite was prepared by Si–10Zr alloyed melt infiltration. Carbon fiber felt was firstly densified by pyrolytic carbon using chemical vapor infiltration to obtain a porous C/C preform. The eutectic Si–Zr alloyed melt (Zr: 10 at.%, Si: 90 at.%) was then infiltrated into the porous preform at 1450 °C to prepare the C/C–SiC composite. Due to the in situ reaction between the pyrolytic carbon and the Si–Zr alloy, SiC, ZrSi2 and ZrC phases were formed, the formation and distribution of which were investigated by thermodynamics. The as-received C/C–SiC composite, with the flexural strength of 353.6 MPa, displayed a pseudo-ductile fracture behavior. Compared with the C/C preform and C/C composite of high density, the C/C–SiC composite presented improved oxidation resistance, which lost 36.5% of its weight whereas the C/C preform lost all its weight and the high density C/C composite lost 84% of its weight after 20 min oxidation in air at 1400 °C. ZrO2, ZrSiO4 and SiO2 were formed on the surface of the C/C–SiC composite, which effectively protected the composite from oxidation.  相似文献   

7.
To improve the oxidation resistance of the carbon/carbon (C/C) composites, a TaB2–SiC–Si multiphase oxidation protective ceramic coating was prepared on the surface of SiC coated C/C composites by pack cementation. Results showed that the outer multiphase coating was mainly composed of TaB2, SiC and Si. The multilayer coating is about 200 μm in thickness, which has no penetration crack or big hole. The coating could protect C/C from oxidation for 300 h with only 0.26 × 10?2 g2/cm2 mass loss at 1773 K in air. The formed silicate glass layer containing SiO2 and tantalum oxides can not only seal the defects in the coating, but also reduce oxygen diffusion rates, thus improving the oxidation resistance.  相似文献   

8.
《Ceramics International》2016,42(11):12901-12906
Carbon fiber-reinforced silicon carbide (C/SiC) nuts and bolts (M8) with different fiber preform structures were prepared by precursor infiltration and pyrolysis. The influences of fiber preform structures on the mechanical properties of C/SiC nuts and bolts, as well as the failure behaviors of threaded joints were studied. A C/SiC nut, which was fabricated by using the preform prepared by stacking 3K carbon fiber cloth followed by stitching, had the highest shearing strength (64.5 MPa). The bolt with the preform prepared by alternatively stacking 3 K carbon fiber cloth and unidirectional layer of carbon fiber tows followed by stitching had the highest extreme tensile strength (243.2 MPa) and shearing strength (106.3 MPa), but low thread tooth bearing ability (3.5 kN) and critical thread engagement length (9 mm). It is suitable for applications emphasizing the extreme tensile or shearing strengths of threaded joints or possessing enough thread engagement length to ensure bolt rupture as the failure mode. The bolt with the perform prepared by stacking 1K carbon fiber cloth followed by stitching had the highest thread tooth bearing ability (5.0 kN) and the lowest critical thread engagement length (6 mm), as well as moderate extreme tensile strength (163.0 MPa) and shearing strength (82.1 MPa). It works effectively for applications concerning thread tooth strength or possessing limited thread engagement length. Therefore, the preform for preparing a C/SiC bolt should be selected according to its application requirements.  相似文献   

9.
SiC whisker reinfored carbide-based composites were fabricated by a reactive infiltration method by using Si as the infiltrate. Rice husks (RHs) were pyrolyzed to SiC whiskers, particles and amorphous carbon, and were then mixed with different contents of B4C as well as Mo powders. The mixtures were molded to porous preforms for the infiltration. The SiC whiskers and particles in the preform remained in the composite. Molten Si reacted with the amorphous carbon, B4C as well as Mo in the preform during the infiltration, forming newly SiC, B12(C,Si,B)3 as well as MoSi2. The upper values of elastic modulus, hardness and fracture toughness of the composites are 297.8 GPa, 16.8 ± 0.8 GPa, and 3.8 ± 0.2 MPa m1/2, respectively. The influence of the phase composition of the composites on the mechanical properties and the fracture mechanism are discussed.  相似文献   

10.
《Ceramics International》2017,43(12):8873-8878
Film formed by carbon nanotubes is usually called carbon nanotube film (CNTf). In the present study, CNTf fabricated by floating catalyst method was used to prepare CNTf/SiC ceramic matrix composites by chemical vapor infiltration (CVI). Mechanical and electrical properties of the resulting CNTf/SiC composites with different CVI cycles were investigated and discussed, and the results revealed that the CNTf has a good adaptability to CVI method. Tensile test demonstrated an excellent mechanical performance of the composites with highest tensile strength of 646 MPa after 2 CVI cycles, and the strength has a decline after 3 CVI cycles for an excessively dense matrix. While, the elastic modulus of the composite increased with the CVI cycles and reached 301 GPa after 3 CVI cycles. Tensile fracture morphologies of the composites were analyzed by scanning electron microscope to study the performance change laws with the CVI cycles. With SiC ceramic matrix infiltrated into the CNTf, enhanced electrical conductivity of the CNTf/SiC composite compared to pure CNTf was also obtained, from 368 S/cm to 588 S/cm. Conductivity of the SiC matrix with free carbon forming in the CVI process was considered as the reason.  相似文献   

11.
C/C–ZrC–SiC composites were prepared by precursor infiltration and pyrolysis process using a mixture solution of organic zirconium-containing polymer and polycarbosilane as precursors. Porous carbon/carbon (C/C) composites with density of 0.92, 1.21 and 1.40 g/cm3 were used as preforms, and the effects of porous C/C density on the densification behavior and ablation resistance of C/C–ZrC–SiC composites were investigated. The results show that the C/C preforms with a lower density have a faster weight gain, and the obtained C/C–ZrC–SiC composites own higher bulk density and open porosity. The composites fabricated from the C/C preforms with a density of 1.21 g/cm3 exhibit better ablation resistance with a surface temperature of over 2400 °C during ablation. After ablation for 120 s, the linear and mass ablation rates of the composites are as low as 1.02 × 10−3 mm/s and −4.01 × 10−4 g/s, respectively, and the formation of a dense and continuous coating of molten ZrO2 solid solution is the reason for their great ablation resistance.  相似文献   

12.
Boron was introduced into Cf/SiC composites as active filler to shorten the processing time of PIP process and improve the oxidation resistance of composites. When heat-treated at 1800 °C in N2 for 1 h, the density of composites with boron (Cf/SiC-BN) increased from 1.71 to 1.78 g/cm3, while that of composites without boron (Cf/SiC) decreased from 1.92 to 1.77 g/cm3. So when boron was used, two cycles of polymer impregnation and pyrolysis (PIP) could be reduced. Meanwhile, the oxidation resistance of composites was greatly improved with the incorporation of boron-bearing species. Most carbon fiber reinforcements in Cf/SiC composite were burnt off when they were oxidized at 800 °C for 10 h. By contrast, only a small amount of carbon fibers in Cf/SiC-BN composite were burnt off. Weight losses for Cf/SiC composite and Cf/SiC-BN composite were about 36 and 16 wt%, respectively.  相似文献   

13.
A reactive infiltration processing of SiC/Fe–Si composites using preforms made of coked rice husks (RHs) and SiC powder in different ratios is reported, in which FeSi2 alloy was used as infiltrant. The preforms were heat-treated at 1550 °C for 6 h prior to the infiltration. The coked RHs, which are composed of SiO2 and C, were converted to SiC and poorly crystallized C by carbothermal reduction during the heat treatment. The study of the microstructure and mechanical properties of the composites shows that molten Fe–Si alloy had good wetting of the heat-treated preforms and adequate infiltration properties. Free carbon in the preform reacted with Si in the molten FeSi2 during infiltration forming new SiC, the composition of the intermetallic liquid being moved towards that of FeSi. As a result, the infiltrated composites are composed of SiC, FeSi2 and FeSi phases. Vickers hardness, elastic modulus, three-point flexural strength and indentation fracture toughness of the composites are found to increase with SiC additions up to 30% w/w in the preforms, reaching the values of 18.2 GPa, 290 GPa, 213 MPa and 4.9 MPa m1/2, respectively. With the SiC addition further raised to 45% w/w, the elastic modulus, flexural strength and fracture toughness of the composite turned down probably due to high residual stress and hence the more intense induction of microcracks in the composite. De-bonding of SiC particles pulled out of the Fe–Si matrix, transgranular fracture of part of the SiC particles and in the Fe–Si matrix, and crack bridging all exist in the fracture process of the composites.  相似文献   

14.
《Ceramics International》2016,42(16):18283-18288
Short carbon fibre (Cf) reinforced silicon carbide (SiC) composites with 7.5 wt% alumina (Al2O3) as sintering additive were fabricated using spark plasma sintering (SPS). Three different Cf concentrations i.e. 10, 20 and 30 wt% were used to fabricate the composites. With increasing Cf content from 0 to 20 wt%, micro-hardness of the composites decreased ~28% and fracture toughness (KIC) increased significantly. The short Cf in the matrix facilitated enhanced fracture energy dissipation by the processes of crack deflection and bridging at Cf/SiC interface, fibre debonding and pullout. Thus, 20 wt% Cf/SiC composite showed >40% higher KIC over monolithic SiC (KIC≈4.51 MPa m0.5). Tribological tests in dry condition against Al2O3 ball showed slight improvement in wear resistance but significantly reduced friction coefficient (COF, μ) with increasing Cf content in the composites. The composite containing 30 wt% Cf showed the lowest COF.  相似文献   

15.
Biomorphic SiC composites were fabricated from wood, including high-density compressed cedar, high-density fiberboard (HDF) and low-density paulownia followed by the fabrication of a preform and liquid silicon infiltration (LSI) process. The degree of molten silicon infiltration was strongly dependent on the cell wall thickness and pore size of the carbon preform. The mechanical properties of the biomorphic SiC composites were characterized by compressive tests at room temperature, 1000 °C and 1200 °C, and the relationship between the mechanical properties and the microstructural characteristics was analyzed. The compressive strength of the biomorphic composites was found to be strongly dependent on their bulk density and decreased as the test temperature increased to 1200 °C. Strength reduction in the biomorphic SiC composites occurred due to the deformation of the remaining Si at elevated temperatures under ambient atmospheric conditions.  相似文献   

16.
《Ceramics International》2016,42(6):6720-6727
3D Cf/ZrC–SiC composites were prepared by a combination process of slurry infiltration and reactive melt infiltration. ZrO2 powders and ZrSi2 alloy, both of which reacted with amorphous carbon, were used as pore-making agent and infiltrator, respectively. After carbothermal reduction at 1650 °C, X-ray diffraction analysis revealed that ZrO2 powders were completely converted into ZrC by reacting with amorphous carbon, and an in-situ formed submicron porous configuration was observed at the areas containing ZrO2. Results showed that the matrix in composites mainly consisted of SiC, ZrC and a small quantity of residual metal. SEM and TEM images revealed the formation of ZrC or SiC intergranular particles in the matrix and the characteristic around the residual resin carbon. The composites had a bending strength of 94.89±16.7 MPa, fracture toughness of 11.0±0.98 MPa m1/2, bulk density of 3.36±0.01 g/cm3, and open porosity of 4.64±0.40%. The formation mechanisms of ZrC–SiC dual matrix and intrabundles׳ structure were discussed in the article.  相似文献   

17.
《Ceramics International》2017,43(17):15047-15052
The combined effects of SiC particles and chopped carbon fibers (Cf) as well as sintering conditions on the microstructure and mechanical properties of spark plasma sintered ZrB2-based composites were investigated by Taguchi methodology. Analysis of variance was used to optimize the spark plasma sintering variables (temperature, time and pressure) and the composition (SiC/Cf ratio) in order to enhance the hardness of ZrB2–SiC–Cf composites. The sintering temperature was found as the most effective variable, with a significance of 83%, on the hardness. The hardest ZrB2-based ceramic was achievable by adding 20 vol% SiC and 10 vol% Cf after spark plasma sintering at 1850 °C for 6 min under 30 MPa. Fracture toughness improvement were related to the simultaneous presence of SiC and Cf phases as well as the in-situ formation of nano-sized interfacial ZrC particles. Crack deflection, crack branching and crack bridging were detected as the toughening mechanisms. A Vickers hardness of 14.8 GPa and an indentation fracture toughness of 6.8 MPa m1/2 were measured for the sample fabricated at optimal processing conditions.  相似文献   

18.
Current generation carbon–carbon (C–C) and carbon–silicon carbide (C–SiC) materials are limited to service temperatures below 1800 °C and materials are sought that can withstand higher temperatures and ablative conditions for aerospace applications. One potential materials solution is carbon fibre-based composites with matrices composed of one or more ultra-high temperature ceramics (UHTCs); the latter are intended to protect the carbon fibres at high temperatures whilst the former provides increased toughness and thermal shock resistance to the system as a whole. Carbon fibre–UHTC powder composites have been prepared via a slurry impregnation and pyrolysis route. Five different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2–20 vol% SiC, ZrB2–20 vol% SiC–10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation resistance has been studied using a purpose built oxyacetylene torch test facility at temperatures above 2500 °C and the results are compared with that of a C–C benchmark composite.  相似文献   

19.
Chopped carbon fibers were introduced into the SiC/C suspensions to enhance the mechanical behaviors of reaction bonded silicon carbide ceramics. The effects of fiber fraction on the flexural strength and fracture toughness were investigated. No preferred fiber orientation was observed on the fracture surface of the green body. This implies a homogeneous dispersion of chopped fiber in the composite. XRD analysis indicates a complete siliconization of both carbon particles and carbon fiber during liquid silicon infiltration. The flexural strength and fracture toughness increase with chopped fiber ranging from 10 vol.% to 30 vol.%. This improvement derives from the fiber pullout, fiber debonding as well as crack deflection. The consequent decline at fiber fraction of 40 vol.% is resulted from the siliconization of chopped fiber and the increase of residual silicon.  相似文献   

20.
This article reported a novel method for preparing diamond/SiC composites by tape-casting and chemical vapor infiltration (CVI) process, and the advantages of this method were discussed. The diamond particle was proved to be thermally stable under CVI conditions and the CVI diamond/SiC composites only contained diamond and CVI-SiC phases. The SEM and TEM results showed a strong interfacial bonding existed between diamond and CVI-SiC matrix. Due to the strong bonding, the surface HRA hardness could reach up to 98.4 (HV 50 ± 5 GPa) and the thermal conductivity (TC) of composites was five times higher than that of pure CVI-SiC matrix. Additionally, the effects of diamond particle size on microstructure and properties of composites were also investigated. With the increasing of particle size, the density and TC of composites with the size 27 μm reached 2.940 g/cm3 and 82 W/(m K), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号