首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanometric-sized gadolinia (Gd2O3) powders were obtained by applying solid-state displacement reaction at room temperature and low temperature calcination. The XRD analysis revealed that the room temperature product was gadolinium hydroxide, Gd(OH)3. In order to induce crystallization of Gd2O3, the subsequent calcination at 600  1200 °C of the room temperature reaction products was studied. Calculation of average crystallite size (D) as well as separation of the effect of crystallite size and strain of nanocrystals was performed on the basic of Williamson-Hall plots. The morphologies of powders calcined at different temperatures were followed by scanning electron microscopy. The pure cubic Gd2O3 phase was made at 600 °C which converted to monoclinic Gd2O3 phase between 1400° and 1600 °C. High-density (96% of theoretical density) ceramic pellet free of any additives was obtained after pressureless sintering at 1600 °C for 4 h in air, using calcined powder at 600 °C.  相似文献   

2.
《Ceramics International》2017,43(18):16403-16407
In this paper, we have reported the signature of multiferroicity and pyroelectricity in BaFe12O19 hexaferrite close to room temperature. The BaFe12O19 hexaferrite samples are synthesized by co-precipitation method at different sintering temperature ranging from 800 to 1200 °C and study their structural, ferroelectric, magnetic, magnetoelectric and pyroelectric properties. X-ray Diffraction patterns show the pure phase formation for all samples. Morphological changes are examined through the scanning electron microscope. The maximum ferroelectric polarization (0.66 μC/cm2) is observed for the sample sintered at 1200 °C, however maximum magnetic polarization 74 emu/g is observed for sample sintered at 1000 °C. Magneto-electric coupling measurements are also performed through dynamic method and average magneto-electric coupling coefficient (~ 7.05 × 10−7 mV/cm Oe2) is observed at room temperature for the sample sintered at 1200 °C. Furthermore, maximum pyroelectric constant (147 × 10−13C/cm2 °C) is observed at 75 °C for BaFe12O19 samples sintered at 1200 °C. The observation of both multiferroicity and pyroelectricity close to room temperature in BaFe12O19 hexaferrite is interesting and useful for multifunctional devices.  相似文献   

3.
Ti-rich BaO–TiO2 thin films were grown on a Pt/Ti/SiO2/Si substrate using rf sputtering and the structural and dielectric properties of the films were investigated. For the film grown at room temperature and rapidly thermal annealed (RTA) at 900 °C for 3 min, an amorphous phase with a small BaTi5O13 crystalline phase was formed. As the growth temperature increased, the amount of the BaTi5O11 crystalline phase increased. For the film grown at 350 °C and RTA at 900 °C for 3 min, the homogeneous BaTi5O11 phase was formed. The BaTi4O9 phase was developed when the growth temperature exceeded 450 °C. The thin film with the homogeneous BaTi4O9 phase was obtained when the film was grown at 550 °C and RTA at 900 °C for 3 min. The dielectric properties of the films were measured at 1–6 GHz range. The dielectric constant (ϵr) of the BaTi5O11 film was about 33 and the dissipation factor was about 0.01. The ϵr and the dissipation factor of the BaTi4O9 film were about 37 and 0.005, respectively.  相似文献   

4.
Transparent lutetium titanate (Lu2Ti2O7) bodies were fabricated by spark plasma sintering using Lu2O3 and TiO2 powders calcined from 700 °C to 1200 °C. No solid-state reaction was identified after calcination at 700 °C, whereas single-phase Lu2Ti2O7 powder was prepared at 1100 and 1200 °C. The calcination at 700 °C promoted densification at the early stages of sintering, whereas residual pores at grain boundaries resulted in Lu2Ti2O7 bodies with low transparency. Low-density and opaque Lu2Ti2O7 bodies formed owing to the coarsening of the powder calcined at 1200 °C. The Lu2Ti2O7 body sintered using the powder calcined at the moderate temperature of 1100 °C had a density of 99.5% with the highest transmittances of 41% and 74% at wavelengths of 550 nm and 2000 nm, respectively.  相似文献   

5.
The TiO2 ceramics were prepared by a solid-state reaction in the temperature range of 920–1100 °C for 2 h and 5 h using TiO2 nano-particles (Degussa-P25 TiO2) as the starting materials. The sinterability and microwave properties of the TiO2 ceramics as a function of the sintering temperature were studied. It was demonstrated that the rutile phase TiO2 ceramics with good compactness could be readily synthesized from the Degussa-P25 TiO2 powder in the temperature range of 920–1100 °C without the addition of any glasses. Moreover, the TiO2 ceramics sintered at 1100 °C/2 h and 920 °C/5 h demonstrated excellent microwave dielectric properties, such as permittivity (Ɛr) value >100, Q × f  > 23,000 GHz and τf  200 ppm/°C.  相似文献   

6.
Highly dense alumina–chrome bodies with low porosity are usually used as corrosion and thermal resistant refractories. Alumina–chrome refractory with molar ratio 1:1 was developed using chemical grade hydrated alumina and chromium (III) oxide by conventional sintering route. Batch materials were attrition milled, isostatically pressed and sintered in the temperature range from 1000 °C to 1700 °C with 2 h soaking at peak temperature. Phase development of the sintered materials with temperature was studied by X-ray diffraction. Sintering temperature, sintering condition and addition of sintering aid (TiO2) have immense effect on the densification of the alumina–chrome refractory. Highly dense alumina–chrome refractory with almost nil apparent porosity was developed at 1500 °C in reducing atmosphere. Flexural strength of the sintered materials at room temperature and at 1200 °C was also measured. 1 wt% TiO2 gives the optimum result with respect to densification and flexural strength.  相似文献   

7.
Fracture toughness, four-point bending strength of transparent spinel, Y2O3 and YAG ceramics in function of temperature (from room temperature up to 1500° C) were measured. Creep resistance at 1500–1550° C was studied too. Grain size distribution was determined on polished and etched surfaces of samples. Fracture surfaces after tests were examined by scanning electron microscopy. The obtained results showed that: in the case of spinel ceramics fracture toughness and strength decreased from 20 to 800° C, increased from 800 to 1200° C and decreased at higher temperature; in the case of Y2O3 ceramics they increased from 400 to 800° C, and next kept constant up to 1500° C; in the case of YAG ceramics they kept constant from 20 to 1200° C and then decreased. The creep strain rate was measured for spinel and YAG but not for Y2O3 ceramics which appeared creep resistant. The hypotheses concerning toughening and creep mechanisms were proposed.  相似文献   

8.
An aqueous solution route was employed to prepare cerium titanate oxide brannerite. Thermal analysis, X-ray diffraction, Raman spectroscopy, transmission and scanning electron spectroscopy, were used to investigate the brannerite structure formation and bulk properties. Mixed metal oxides (TiO2, CeO2 and brannerite CeTi2O6) were formed upon calcination at 800 °C for 12 h. The amount of brannerite phase decreased to form the constituent oxides with increasing calcination temperature and only pure TiO2 and CeO2 were present after 1200 °C calcination. The brannerite CeTi2O6 phase reformed at 1300 °C, and its relative amount was increased with dwell time. After 48 h calcination at 1300 °C, brannerite with only minor metal oxide impurities (<1%) was observed. The sample melted at 1400 °C which led to the collapse of brannerite back to its constituent oxides. Further, the phase formation was influenced by pelletization of the powders, which may be explained by a molar volume increase during brannerite formation. Attempts to confirm this hypothesis using Pu brannerite were inconclusive.  相似文献   

9.
A series of TiO2 supported MnWOx catalysts MnxW0.05Ti0.95  xO2  δ (x = 0.05, 0.1, 0.15) were synthesized by solution combustion method. The Mn0.10W0.05Ti0.85O2  δ catalyst showed highest activity in NH3-SCR reaction within a broad temperature range of 200 °C–400 °C. XRD and TEM results indicate that the active Mn and W species are highly dispersed over TiO2 support in the form of nanoparticles (4–7 nm). The TEM and H2-TPR results also suggest that a MnWOx phase has been formed on the TiO2, which is beneficial for the activity of the MnxW0.05Ti0.95  xO2  δ catalysts in the high temperature range of 280 °C–400 °C.  相似文献   

10.
《Ceramics International》2017,43(9):6996-7001
An efficient and flexible chemical co-precipitation method has been used to synthesize nanoscale Al2O3-GdAlO3 powders with eutectic composition. The as-synthesized powders exhibit a highly dispersive and homogeneous distribution with an average particle size of 50 nm. The phase transition in the resulting powders strongly depends upon the calcination temperature. GdAlO3 undergoes complete crystallization after calcination at 1050 °C, however, the diffraction peaks of α-Al2O3 are found at a relatively high calcination temperature of at least 1300 °C. The fully-densified Al2O3-GdAlO3 ceramic with eutectic composition obtained by hot pressing the nanoscale powders at 1500 °C exhibits a room temperature flexural strength of 556 MPa, a Vickers hardness of 17.3 GPa and a fracture toughness of 7.5 MPa m1/2. The high temperature flexural strength of the as-sintered Al2O3-GdAlO3 ceramic is measured to be 515 MPa after bending tests at 1000 °C.  相似文献   

11.
《Ceramics International》2016,42(11):12981-12987
The effect of SrSO4 content on the tribological properties of NiCr–30wt%ZrO2(Y2O3) (NC30Z) cermet was evaluated over a wide temperature range from room temperature to 1000 °C. The results indicated that the inclusion of SrSO4 effectively improved the friction coefficients and wear rates of NC30Z cermet above 400 °C. NC30Z–5SrSO4 composite against alumina ball exhibited satisfactory tribological performance, which was attributed to synergistic lubrication of pseudocubic-SrZrO3 and NiCr2O4 between 400 °C and 800 °C and cubic-SrZrO3, NiCr2O4, NiO and Cr2O3 at 1000 °C.  相似文献   

12.
The sintering behaviour of conventional yttria powder was investigated, with emphasis on the effect of sintering additives such as B2O3, YF3, Al2O3, ZrO2, and TiO2, etc. at sintering temperatures from 1000 °C to 1600 °C. Powder shrinkage behaviour was analysed using a dilatometer. The powder sintering mechanisms were identified at different temperatures using powder isothermal shrinkage curves. This analysis showed that the sintering additives B2O3 and YF3 could improve yttria sintering by changing the diffusion/sintering mechanisms at certain temperatures, while sintering additives TiO2, Al2O3 and ZrO2 appeared to retard the powder densification at temperatures around 1000 °C and are more suitable when used at temperatures in excess of 1300 °C. The powder with La2O3 added had the slowest densification rate throughout the test temperatures in this experiment and was also found to be more suitable when used at temperatures higher than 1550 °C.  相似文献   

13.
The microwave dielectric properties of LiNb3O8 ceramics were investigated as a function of the sintering temperature and the amount of TiO2 additive. LiNb3O8 ceramics, which were calcined at 750 °C and sintered at 1075 °C for 2 h, showed a dielectric constant (ɛr) of 34, a quality factor (Q × f0) of 58,000 GHz and a temperature coefficient of resonance frequency (τf) of −96 ppm/°C, respectively. The density of the samples influenced the properties of these properties. As the TiO2 content increased in the LiNb3O8–TiO2 system, ɛr and τf of the material were increased due to the mixing effect of TiO2 phase, which has higher dielectric constant and larger positive τf. The 0.65LiNb3O8–0.35TiO2 ceramics showed a dielectric constant ɛr of 46.2, a quality factor (Q × f0) of 5800 GHz and a temperature coefficient of resonance frequency τf of near to 0 ppm/°C.  相似文献   

14.
《Ceramics International》2017,43(8):5934-5940
This paper reports a facile two-step synthesis route for the preparation of flower-like ZnO/α-Fe2O3 nanorods (NRs). Flower-like ZnO NRs with the average diameter about 810 nm and length about 4.5 µm were firstly synthesized via a chemical solution method, and then ZnO NRs was coated with a continuous α-Fe2O3 layer to form ZnO/α-Fe2O3 core-shell structure through an ionic-layer adsorption and reaction method. The gas-sensing results show that the ZnO/α-Fe2O3 NRs exhibit excellent sensitivity, selectivity, and response-recovery capacity to ethanol vapor at a low optimum temperature of 240 °C. In particular, compared with pure ZnO NRs and α-Fe2O3 nanoparticles (NPs), the ZnO/α-Fe2O3 NRs show an obvious improvement in gas sensing properties. The substantial improvement of sensing properties may be attributed to the unique microstructure and heterojunction formed between ZnO and α-Fe2O3.  相似文献   

15.
Oxidation of commercial Ti2AlC MAX phase powders at 200–1000 °C has been investigated by XRD, XPS, SEM, STA and TGA coupled with FTIR. These powders are a mixture of Ti2AlC, Ti3AlC2, TiC and Ti1.2Al0.8. Oxidation at 400 °C led to disappearance of carbide phases from Ti 2p, Al 2p and C 1s XPS spectra. At 600 °C, powders changed from dark grey to light grey with a significant volume increase due to crack formation. Powders were severely oxidized by detecting rutile with minor anatase TiO2. At 800 °C, α-Al2O3 was detected while anatase transformed into rutile TiO2. The cracks were healed and disappeared. At 1000 °C, the Ti2AlC powders were fully oxidized into rutile TiO2 and α-Al2O3 with a change of powder color from light grey to yellow. FTIR detected the release of C as CO2 from 200 °C onwards but with additional CO above 800 °C.  相似文献   

16.
Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra high temperature ceramics (UHTCs) have been measured at temperatures from room temperature to 2000 °C and compared with SiC-doped ZrB2- and HfB2-based UHTCs and monolithic ZrB2 and HfB2. Thermal conductivities of La2O3-doped UHTCs remain constant around 55–60 W/mK from 1500 °C to 1900 °C while SiC-doped UHTCs showed a trend to decreasing values over this range.  相似文献   

17.
《Ceramics International》2015,41(7):8981-8987
Al2O3- and TiO2-based ceramic membranes prepared using polymeric synthesis route were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and gas permeability tests. The influence of the final calcination temperature and the systematic investigation of the properties of the membranes are provided. The calcination temperature affected morphological, structural and chemical properties, as well as the gas permeability of the ceramic membranes. XRD analysis revealed rhombohedral and tetragonal structures of Al2O3 and TiO2-based ceramic, respectively, prepared at calcination temperatures of 1100 and 1200 °C. The TiO2-based ceramic matrix calcined at temperatures of 1100 and 1200 °C exhibited a well-defined crystalline microstructure with the grains increasing in size as a function of temperature. FTIR analysis revealed that phosphorus additives in orthoclase clay tend to form phosphonate groups during the calcination process. The decomposition of organic source was not fulfilled as tested at calcination temperatures of 1000, 1100 and 1200 °C.  相似文献   

18.
A mixture of Fe2O3 and TiO2 oxides has been mechanically milled to form TiFe2O4 spinel phase. X-ray diffraction (XRD) pattern of the as-milled mixture shows the presence of both Fe2O3 and TiO2 phases. The diffraction peaks become broader and their relative intensity drastically decreases due to the particle size reduction and accumulation of strains. The milled powder was then subjected to annealing at different temperatures (600, 750, 900, 1200 °C). Annealing at 600 °C and 750 °C does not show any significant change in the phase formation. Nonetheless, XRD patterns show a narrowing and an increase in the intensity of Fe2O3 peaks with respect to TiO2, which was reflected by an evolution in particle nano-structure following SEM analysis. An increase in the intensity ratio of the major peaks belonging to Fe2O3 relative to the as-milled mixture, which was associated with a reduction of the amount of TiO2, suggested a possible insertion of Ti into the Fe2O3 crystal lattice. However, in VSM measurements, annealing at 600 °C and 750 °C does not change the ferromagnetic phase but the effect of annealing was a notable reduction in the values of both Ms and Mr (saturation magnetization and remanence magnetization respectively) Ultimately, as the powder was heated to 900 °C a new phase seemed to have emerged, this phase was confirmed by SEM, XRD, and magnetic measurements (VSM) where it change phase from ferromagnetic to paramagnetic phase.  相似文献   

19.
A Li2ZnGe3O8 ceramic was investigated as a promising microwave dielectric material for low-temperature co-fired ceramics applications. Li2ZnGe3O8 ceramic was prepared via the conventional solid-state method. X-ray diffraction data shows that Li2ZnGe3O8 ceramic crystallized into a cubic spinel structure with a space group of P4132. Dense ceramic with a relative densities of 96.3% were obtained when sintered at 945 °C for 4 h and exhibited the optimum microwave properties with a relative permittivity (εr) of 10.3, a quality factor (Q × f) of 47,400 GHz (at 13.3 GHz), and a temperature coefficient of resonance frequency (τf) of −63.9 ppm/°C. The large negative τf of Li2ZnGe3O8 ceramic could be compensated by rutile TiO2, and 0.9Li2ZnGe3O8–0.1TiO20·1TiO2 ceramic sintered at 950 °C for 4 h exhibited improved microwave dielectric properties with a near-zero τf of −1.6 ppm/°C along with εr of 11.3 and a Q × f of 35,800 GHz (11.6 GHz). Moreover, Li2ZnGe3O8 was found to be chemically compatible with silver electrode when sintered at 945 °C.  相似文献   

20.
《Ceramics International》2017,43(15):12126-12137
Mechanical resistance of Al2O3 + TiO2 nanocomposite ceramic coating deposited by electrostatic spray deposition method onto X10CrAlSi18 steel to thermal and slurry tests was investigated. The coating was produced from colloidal suspension of TiO2 nanoparticles dispersed in 3 wt% solution of Al2(NO3)3, as Al2O3 precursor, in ethanol. TiO2 nanoparticles of two sizes, 15 nm and 32 nm, were used in the experiments. After deposition, coatings were annealed at various temperatures, 300, 1000 and 1200 °C, and next exposed to cyclic thermal and slurry tests. Regardless of annealing temperature and the size of TiO2 nanoparticles, the outer layer of all coatings was porous. The first five thermal cycles caused a rapid increase of aluminum content of the surface layer to 30–37 wt%, but further increase in the number of thermal cycles did not affect the aluminum content. The oxidation rate of coating-substrate system was lower during the thermal tests than during annealing. The oxidation rate was also lower for smaller TiO2 particles (15 nm) forming the coating than for the larger ones (32 nm). The protective properties of Al2O3 + TiO2 coating against intense oxidation of substrate were lost at 1200 °C. Slurry tests showed that coatings annealed at 1000 °C had the best slurry resistance, but thermal tests had weakened this slurry resistance, mainly due to decreasing adhesion of the coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号