首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monodispersed flower-like titanate superstructure was successfully prepared by simple hydrothermal process without any surfactant or template. N2-sorption analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD) observation of as-synthesized product revealed the formation of flower-like titanate with diameter of about 250–450 nm and BET surface area (SBET) of 350.7 m2 g?1. Upon thermal treatment at 500 °C, the titanate nanosheets were converted into anatase TiO2 with moderate deformation of their structures. The as-prepared flower-like titanate showed high photocatalytic activity for H2 evolution from water splitting reaction. Moreover, the sample heat treated at 500 °C exhibited higher photocatalytic activity than that of commercial TiO2 anatase powder (ST-01).  相似文献   

2.
N-containing carbon materials were obtained from waste plum stones submitted to pyrolysis under Ar flow at 700 °C or to activation under steam at 800 °C and enriched with nitrogen by heating in a NH3/air mixture at 270 °C or in NO at 300 °C. In situ mixtures of TiO2 and carbons were prepared by the slurry method and methylene blue photodegradation was chosen as a model reaction to verify the influence of N-containing carbons on the photocatalytic activity of TiO2 under artificial visible light irradiation. From the kinetics of methylene blue degradation an important synergy effect between both solids was detected with a remarkable increase up to a factor of 5.3 higher in the photocatalytic activity on TiO2–C than that on TiO2 alone. A mechanism for the photoassisting role of N-containing carbons upon the photoactivity of TiO2 under visible light is discussed.  相似文献   

3.
《Ceramics International》2017,43(6):4807-4813
The core-shell SrTiO3/TiO2 heterostructure was obtained via a combined hydrothermal route and calcination treatment using amorphous spherical TiO2 as both template and reactant. Adjusting the hydrothermal environments can control the morphology of the post-calcined sample when it is hydrothermally treated at 180 °C/3 h and 200 °C/6 h, respectively. Following the heat treatment at 700 °C/4 h, the obtained powder illustrates the core-shell heterostructure with a hierarchical surface, and the diameter of the microsphere is about 700 nm. This synthesizing route facilitates the formation of a concentration gradient of SrTiO3 and TiO2, and subsequently constructs a gradient energy level, which helps the samples exhibited an excellent de-colorize activity over the methylene blue. The possible formation mechanism of core-shell SrTiO3/TiO2 heterostructures was proposed to guide the further improvement of their photocatalytic activity.  相似文献   

4.
The TiO2 ceramics were prepared by a solid-state reaction in the temperature range of 920–1100 °C for 2 h and 5 h using TiO2 nano-particles (Degussa-P25 TiO2) as the starting materials. The sinterability and microwave properties of the TiO2 ceramics as a function of the sintering temperature were studied. It was demonstrated that the rutile phase TiO2 ceramics with good compactness could be readily synthesized from the Degussa-P25 TiO2 powder in the temperature range of 920–1100 °C without the addition of any glasses. Moreover, the TiO2 ceramics sintered at 1100 °C/2 h and 920 °C/5 h demonstrated excellent microwave dielectric properties, such as permittivity (Ɛr) value >100, Q × f  > 23,000 GHz and τf  200 ppm/°C.  相似文献   

5.
TiO2-containig single-phase gels with (Al2O3 + TiO2)/(SiO2) molar ratios 3/2 and 2/1 were prepared by gelling mixtures of aluminium nitrate, tetraethylorthosilicate and titanium isopropoxide. Gels were fast heated at several temperatures up to 1100 °C. Dried and heated gels were characterized by differential thermal analysis (DTA), magic angle spinning nuclear magnetic resonance (MAS-NMR), X-ray powder diffraction (XRD), and scanning and transmission electron microscopies (SEM and TEM). Coupled DTA and XRD results of gels fast heated at 900 °C showed the crystallisation of two mullites as well as a small amount of alumina-silica spinel. 27Al NMR spectra showed the formation of pentacoordinated aluminium before mullite crystallization. The increase of lattice parameters of single-phase mullites heated at 1100 °C indicated that the amount of TiO2 incorporated into the mullite structure increased on raising the amount of nominal TiO2 in both series. SEM and TEM images of heated gels at 1100 °C displayed the formation of well-shaped parallelepiped of titanium-doped mullite nanocrystals with crystalline anisotropy.  相似文献   

6.
TiO2 doped with various loadings of nitrogen was prepared by nitridation of a nano-TiO2 powder in an ammonia/argon atmosphere at a range of temperatures from 400 to 1100 °C. The nano-TiO2 starting powder was produced in a continuous hydrothermal flow synthesis (CHFS) process involving reaction between a flow of supercritical water and an aqueous solution of a titanium salt. The structures of the resulting nanocatalysts were investigated using powder X-ray diffraction (XRD) and Raman spectroscopy. Products ranging from N-doped anatase TiO2 to phase-pure titanium nitride (TiN) were obtained depending on post-synthesis heat-treatment temperature. The results suggest that TiN started forming when the TiO2 was heat-treated at 800 °C, and that pure phase TiN was obtained at 1000 °C after 5 h nitridation. The amounts and nature of the Ti, O and N at the surface were determined by X-ray photoelectron spectroscopy (XPS). A shift of the band-gap to lower energy and increasing absorption in the visible light region, were observed by increasing the heat-treatment temperature from 400 to 700 °C.  相似文献   

7.
Nano-sized Ba0.7Sr0.3TiO3 powders are prepared by post-treatment of the precursor powders with hollow and thin wall structure at temperatures between 900 and 1100 °C. Ethylenediaminetetraacetic acid and citric acid improve the hollowness of the precursor powders prepared by spray pyrolysis. The mean sizes of the powders post-treated at temperatures of 900, 1000 and 1100 °C are 42, 51 and 66 nm, respectively. The densities of the Ba0.7Sr0.3TiO3 pellets obtained from the powders post-treated at 900, 1000 and 1100 °C are each 5.36, 5.55 and 5.38 g cm?3 at a sintering temperature of 1300 °C. The pellet obtained from the powders post-treated at 1000 °C has higher maximum dielectric constant than those obtained from the powders post-treated at 900 and 1100 °C.  相似文献   

8.
《Ceramics International》2016,42(7):7993-7999
TiO2 nanotubes (TNT) were prepared by a hydrothermal method from the commercially available TiO2-P25. Five types of TNT were produced at different temperatures (120 °C, 130 °C, and 150 °C) and by using different reaction times (12 h, 24 h, and 30 h). The photocatalytic reactor that was used is a film catalytic reactor, in which the height of the catalyst is 1.0 mm. The BET and FESEM analysis results showed that TNT130-24 (130 °C, 24 h) and TNT150-12 (150 °C, 12 h) possessed well-formed tubular structures with a high specific surface area (282.9–316.7 m2 g−1) and large pore volumes (0.62–0.70 cm3 g−1). However, TNT120-30 (120 °C, 30 h) presented the best photocatalytic activity upon CO removal due to the synergistic effect of TiO2 nanotubes and TiO2 particles. After the TNT catalysts were modified with Pt particles, the removal efficiency was in the order of Pt/TNT120-30>Pt/TNT130-24>Pt/P25. Pt/TNT120-30 showed 99% removal efficiency in a continuous photoreactor with a high space velocity of 1.79×104 h−1. The results of the TEM and DRS analyses confirmed that the Pt particles enhanced the photocatalytic reaction, which was attributed to the well-dispersed nature of the 1 nm nanoscaled Pt particles on the surfaces of the TNT catalysts, and narrowed the band gap from 3.22 eV to 3.01 eV.  相似文献   

9.
In the present study rare earth doped (Ln3+–TiO2, Ln = La, Ce and Nd) TiO2 nanofibers were prepared by the sol–gel electrospinning method and characterized by XRD, SEM, EDX, TEM, and UV-DRS. The photocatalytic activity of the samples was evaluated by Rhodamine 6G (R6G) dye degradation under UV light irradiation. XRD analysis showed that all the synthesized pure and doped titania nanofibers contain pure anatase phase at 500 °C but at 700 °C it shows both anatase and rutile phase. XRD result also shows that Ln3+-doped titania probably inhibits the phase transformation. The diameter of nanofibers for all samples ranges from 200 to 700 nm. It was also observed that the presence of rare-earth oxides in the host TiO2 could decrease the band gap and accelerate the separation of photogenerated electron–hole pairs, which eventually led to higher photocatalytic activity. To sum up, our study demonstrates that Ln3+-doped TiO2 samples exhibit higher photocatalytic activity than pure TiO2 whereas Nd3+-doped TiO2 catalyst showed the highest photocatalytic activity among the rare earth doped samples.  相似文献   

10.
Carbon quantum dots (C QDs)/TiO2 nanosheet (TNS) composites were prepared by a simple low temperature process in which TNS were dispersed in C QDs solution, and dried at 60 °C. The C QDs/TNS composites were characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM) and high-resolution TEM. The results indicated that C QDs were well combined with TNS through surface carbon–oxygen groups. The photocatalytic activity was investigated by degradation of rhodamine B under visible light irradiation. The photocatalytic activity of C QDs/TNS composites was significantly enhanced compared with that of C QDs/P25 composites and pure TNS, which indicated that the unique up-converted photoluminescence behavior of C QDs and highly reactive {0 0 1} facets of TNS both played important roles in the enhancement of photocatalytic activity of C QDs/TNS composites.  相似文献   

11.
In situ surface modification of TiO2 and ZnO metal oxide particles has been carried out under hydrothermal conditions within a wide range of temperature and pressure (T = 150–400 °C; P = up to 20 MPa). The influence of the surfactant and selective doping with active metal ions on the crystal size, morphology, and photocatalytic activity of TiO2 and ZnO particles has been carried out. A systematic characterization of the product has been carried out using powder XRD, FTIR, TGA, SEM/TEM, and UV–vis spectroscopy. Similarly the photocatalytic activity in these metal oxides varies with the size, shape and dopant metals.  相似文献   

12.
Titanium dioxide nanoparticles prepared in situ by sol–gel method were supported on a spherical activated carbon to prepare TiO2/AC hybrid photocatalysts for the oxidation of gaseous organic compounds. Additionally, a granular activated carbon was studied for comparison purposes. In both types of TiO2/AC composites the effect of different variables (i.e., the thermal treatment conditions used during the preparation of these materials) and the UV-light wavelength used during photocatalytic oxidation were analyzed. The prepared materials were deeply characterized (by gas adsorption, TGA, XRD, SEM and photocatalytic propene oxidation). The obtained results show that the carbon support has an important effect on the properties of the deposited TiO2 and, therefore, on the photocatalytic activity of the resulting TiO2/AC composites. Thus, the hybrid materials prepared over the spherical activated carbon show better results than those prepared over the granular one; a good TiO2 coverage with a high crystallinity of the deposited titanium dioxide, which just needs an air oxidation treatment at low-moderate temperature (350–375 °C) to present high photoactivity, without the need of additional inert atmosphere treatments. Additionally, these materials are more active at 365 nm than at 257.7 nm UV radiation, opening the possibility of using solar light for this application.  相似文献   

13.
To improve the photocatalytic performance of anatase TiO2 (a-TiO2), it is necessary to simultaneously increase its crystallinity and surface area. Our approach to achieve the desired morphology is to develop a porous single crystal that can be transformed from its mesocrystal form via annealing. We synthesized a-TiO2 mesocrystals onto multiwalled CNTs using a facile one-pot chemical approach, and investigated the effect of the annealing temperature (200–600 °C) on the crystallinity, morphology, chemical bonding state, and photocatalytic performance of the TiO2/CNT composites. The as-grown sample and sample annealed at 200 °C consisted of spindle-like a-TiO2 mesocrystals. As the annealing temperature increased to 400 °C, the morphology of a-TiO2 changed from mesocrystals into porous single crystals and the surface area enlarged due to the thermo-decomposition of organic residues between the subunits. The chemical bonding (Ti–O–C) between TiO2 and CNT was also strengthened with increasing annealing temperature. On the other hand, the TiO2 was separated from the CNT at 600 °C because of the large difference in the thermal expansion coefficients. The photocatalytic performance of the TiO2/CNT composites was the highest at 400 °C due to the increased crystallinity, removal of the by-products, and strengthened Ti–O–C bonds, resulting in an increase in the photocatalytic active sites and efficient charge separation.  相似文献   

14.
Transparent lutetium titanate (Lu2Ti2O7) bodies were fabricated by spark plasma sintering using Lu2O3 and TiO2 powders calcined from 700 °C to 1200 °C. No solid-state reaction was identified after calcination at 700 °C, whereas single-phase Lu2Ti2O7 powder was prepared at 1100 and 1200 °C. The calcination at 700 °C promoted densification at the early stages of sintering, whereas residual pores at grain boundaries resulted in Lu2Ti2O7 bodies with low transparency. Low-density and opaque Lu2Ti2O7 bodies formed owing to the coarsening of the powder calcined at 1200 °C. The Lu2Ti2O7 body sintered using the powder calcined at the moderate temperature of 1100 °C had a density of 99.5% with the highest transmittances of 41% and 74% at wavelengths of 550 nm and 2000 nm, respectively.  相似文献   

15.
《Ceramics International》2015,41(7):8981-8987
Al2O3- and TiO2-based ceramic membranes prepared using polymeric synthesis route were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and gas permeability tests. The influence of the final calcination temperature and the systematic investigation of the properties of the membranes are provided. The calcination temperature affected morphological, structural and chemical properties, as well as the gas permeability of the ceramic membranes. XRD analysis revealed rhombohedral and tetragonal structures of Al2O3 and TiO2-based ceramic, respectively, prepared at calcination temperatures of 1100 and 1200 °C. The TiO2-based ceramic matrix calcined at temperatures of 1100 and 1200 °C exhibited a well-defined crystalline microstructure with the grains increasing in size as a function of temperature. FTIR analysis revealed that phosphorus additives in orthoclase clay tend to form phosphonate groups during the calcination process. The decomposition of organic source was not fulfilled as tested at calcination temperatures of 1000, 1100 and 1200 °C.  相似文献   

16.
The titanate nanostructures with high UV absorption characteristics could be fabricated by hydrothermal method within a temperature range of 90–150 °C. TEM, XRD, BET analyses, and UV–vis spectroscopy were employed to elucidate the synthesized titanate nanostructure characteristics which were microstructure, phase transformation, specific surface area, and band gap energy, respectively. With an increase in the hydrothermal treating temperature from 90 to 120 °C, the specific surface area of titanate nanostructures was increased from 83 to 258 m2/g, while the band gap energy of titanate nanostructures was increased from 3.44 to 3.84 eV and then slightly decreased to 3.81 eV at 150 °C. The fabricated titanate nanostructures could exhibit higher UV adsorption capability but lower photocatalytic activity when compared with that of commercial TiO2 powders.  相似文献   

17.
A visible-light-active N-containing TiO2 photocatalysts were prepared from crude amorphous titanium dioxide by heating amorphous TiO2 in gaseous NH3 atmosphere. The calcination temperatures ranged from 200 to 1000 °C, respectively. UV–vis/DR spectra indicated that the N-doped catalysts prepared at temperatures <400 °C absorbed only UV light (Eg = 3.3 eV), whereas samples prepared at temperatures ≥400 °C absorbed both, UV (Eg = 3.10–3.31 eV) and vis (Eg = 2.54–2.66 eV) light. The chemical structure of the modified photocatalysts was investigated using FT-IR/DRS spectroscopy. All the spectra exhibited bands indicating nitrogen presence in the catalysts structure. The photocatalytic activity of the investigated catalysts was determined on a basis of a decomposition rate of nonionic surfactant (polyoxyethylenenonylphenol ether, Rokafenol N9). The most photoactive catalysts were those calcinated at 300, 500 and 600 °C. For the catalysts heated at temperatures of 500 and 600 °C Rokafenol N9 removal was equal to 61 and 60%, whereas TOC removal amounted to 40 and 35%, respectively. In case of the catalyst calcinated at 300 °C surfactant was degraded by 54% and TOC was removed by 35%. The phase composition of the most active photocatalysts was as follows: (a) catalyst calcinated at 300 °C—49.1% of amorphous TiO2, 47.4% of anatase and 3.5% of rutile; (b) catalyst calcinated at 500 °C—7.1% of amorphous TiO2, 89.4% of anatase and 3.5% of rutile; (c) catalyst calcinated at 600 °C—94.2% of anatase and 5.8% of rutile.  相似文献   

18.
TiO2 microspheres were synthesized by hydrothermal reaction using Ti(OBu)4 as the precursor. In order to enhance the efficiency of water splitting by the TiO2 microspheres, Pt-modified TiO2 microspheres were prepared by the impregnation-reduction method. The diameter of TiO2 microspheres is around 5–10 μm. The photocatalytic performances of the catalysts were measured by hydrogen generation from a mixture of water and methanol under UV light irradiation. The photocatalytic activity of the TiO2 microspheres was remarkably enhanced by loading Pt. The optimal Pt loading is 1.2 wt%. Pt/TiO2 microspheres exhibit about 125 times greater H2 production rate than the unmodified TiO2 microspheres. The effect of calcination temperature on photocatalytic activity of the TiO2 microspheres was also investigated.  相似文献   

19.
《Ceramics International》2016,42(9):10892-10901
Au–TiO2/SiO2 heterogeneous catalysts with different Au contents were successfully synthesized by a facile hydrothermal process and their photocatalytic activity towards reduction of Rose Bengal (RB), Methyl Blue (MB), Rhodamine B (RhB) and Congo Red (CR) was investigated in the presence of sodium borohydride (NaBH4) for advanced oxidation process (AOP). The results reveal that 3 wt% Au loaded in TiO2/SiO2 can significantly degrade high RB concentration dye (>95%, 0.3 g/L, 12 pH) within 20 min of irradiation time. All catalysis reaction followed the pseudo-first order rate reaction with high correlation coefficient. The effect of loading of Au nanoparticles (1–5 wt%) along with variation in dye concentration (100–500 ppm), pH of solution (2–12), catalysts dosage (0.1–0.5 g/L), and reaction temperature (30–80 °C) were also studied. The present works shows the superior performance of Au–TiO2/SiO2 heterogeneous catalysts to be related to the high dispersion of Au nanoparticles in the TiO2/SiO2 and to the catalytic effect between gold and TiO2.  相似文献   

20.
《Ceramics International》2016,42(8):10030-10036
In this work, the influence of (a) Ba excess in the starting hydrothermal mixture with TiO2, (b) hydrothermal reaction temperature, and (c) washing cycles on the hydrothermal synthesis of barium titanate (BaTiO3) were investigated to assess their relative contributions to the final characteristics of the sintered oxide. BaTiO3 cake was prepared by hydrothermal synthesis at 150 °C and 180 °C using BaOH2·8H2O and TiO2·xH2O as starting hydrothermal mixture with an excess of Barium (+1 Ba mol% and +2 Ba mol%). The obtained BaTiO3 cake was washed several times from 0 to 14 (Wn<15) using simple de-ionized water and then sintered at 1120 °C for 3 h. All considered hydrothermal syntheses variables strongly contribute to the final characteristics of the sintered BaTiO3 powders in terms of Ba2+/Ti4+ molar ratio, crystalline structure and mean particle size. In particular, it is clear from these experiments that the removal of the unfavorable barium salts from BaTiO3 cake by long washing cycles before final calcination is a critical step in the hydrothermal synthesis of BaTiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号