首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(16):23481-23491
Eu3+-doped lead-free piezoelectric ceramics, 0.937Na0.5Bi0.5?xEuxTiO3-0.063BaTiO3 (abbreviated as NBExT-BT, where x = 0, 0.003, 0.005, 0.01, 0.013, 0.015, 0.017, and 0.02), were synthesized using a conventional solid-state synthesis method. All the component samples were crystallized in a pure perovskite structure without a secondary phase. The introduction of Eu3+ caused the evident variation of the dielectric, ferroelectric and luminescence properties. The remanent polarization and coercive field of the pure NBT-BT are Pr ~29.24 μC/cm2, Ec~39.33 kV/cm, respectively. The maximum of the remanent polarization Pr of ~38.02 μC/cm2 at room temperature and the highest dielectric constant of 6899 with a frequency of 1 kHz were obtained for NBE0.003T-BT. The maximum bipolar strain Smax of ~0.91% and the minimum of coercive field Ec ~18.45 kV/cm were achieved by the NBE0.015T-BT, resulting from the formation of a double hysteresis loop. For all the components, Eu3+ doping stabilized the antiferroelectric phenomenon at high temperature. Furthermore, the polarized NBE0.015T-BT had the strongest fluorescence luminescence intensity as well as a fluorescence lifetime reaching 785.98 μs.  相似文献   

2.
《Ceramics International》2022,48(15):21061-21070
(1-x) (0.98Na0.5Bi0.5TiO3–0.01BaTiO3–0.01BiFeO3)–xCaTiO3 (NBB-xCT) ceramics were produced using traditional solid-state synthesis methods. The surface morphology, domain structure, and electrical properties of the ceramic samples were systematically studied. In addition, the temperature and frequency stabilities of the NBB-15CT sample at 200 kV/cm were tested. Generally, NBB-xCT ceramics exhibit a typical single perovskite phase structure. The results indicate that the NBB-15CT ceramics showed a high energy density of 3.14 J/cm3 at 250 kV/cm. The piezoresponse force microscopy (PFM) results showed that the addition of CT broke the macrodomains of the 0.98Na0.5Bi0.5TiO3-0.01BaTiO3-0.01BiFeO3 ceramic and helped to form nanodomains, leading to an improved energy storage performance. The above performance indicates that the specimens possess very good temperature-and frequency-dependent energy storage performances at 30–150 °C and 1–100 Hz. Moreover, the electric energy storage and release in the NBB-15CT ceramic indicated that the power density could reach 55.30 MV/cm3 at 180 kV/cm. Therefore, the NBB-15CT ceramic is a promising material for electrical capacitors.  相似文献   

3.
《Ceramics International》2016,42(12):13783-13789
Lead-free (1−x)(0.0852Bi0.5Na0.5TiO3–0.12Bi0.5K0.5TiO3–0.028BaTiO3)–xCaZrO3 piezoelectric ceramics (BNT−BKT−BT−xCZ, x=0, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by using a conventional solid-state reaction method. The effects of CZ-doping on the structural, dielectric, ferroelectric and piezoelectric properties of the BNT−BKT−BT−xCZ system were systematically investigated. The polarization and strain behaviors indicated that the long-range ferroelectric order in the unmodified BNT−BKT−BT ceramics was disrupted by the increase of CZ-doping content, and correspondingly the depolarization temperature (Td) shifted down from 109 °C to below room temperature. When x>0.03, accompanied with the drastic decrease in the remnant polarization (Pr) and piezoelectric coefficient (d33), the electric-field-induced strain was enhanced significantly. A large unipolar strain of 0.35% under an applied electric field of 70 kV/cm (Smax/Emax=500 pm/V) was obtained in the BNT−BKT−BT−0.04CZ ceramics at room temperature, which was attributed to the reversible electric-field-induced phase transition between the relaxor and ferroelectric phases.  相似文献   

4.
《Ceramics International》2017,43(10):7653-7659
Lead-free (1−x)(0.75Bi0.5Na0.5TiO3–0.25Bi0.5K0.5TiO3)–xBiAlO3 (BNT–BKT–100xBA, x=0–0.10) ceramics were prepared by two-step sintering method and their phase structure, micro morphology and electrical properties were systematically investigated. X-ray diffraction analysis indicates a pure perovskite phase for x≤0.06 as well as a structural evolution from a tetragonal toward a pseudocubic phase. Transmission electron microscopy study of the x=0.04 composition reveals the existence of antiferroelectric phase with a0a0c+ oxygen octahedron tilting which is in the form of nano-domains. Polarization-electric field and current-electric field hysteresis loops demonstrate that the increase of BA concentration destroys the ferroelectric order and strengthens antiferroelectric order. A much enhanced energy storage density of 1.15 J/cm3 and efficiency of 73.2% is achieved under 105 kV/cm at x=0.06. In addition, its energy storage property is found to depend weakly on temperature within the measurement range of 25–150 °C.  相似文献   

5.
6.
A novel strategy of enhancing the dielectric and energy storage properties of Na0.5Bi0.5TiO3–BaTiO3 (NBT–BT) ceramics by introducing a K0.5Na0.5NbO3 (KNN) ferroelectric phase is proposed herein, and its underlying mechanism is elucidated. The lead-free KNN ceramic decreases the residual polarisation and increases the electric breakdown strength of the NBT–BT matrix through the simultaneous modification of its A-sites and B-sites. The obtained NBT?BT?x?KNN ceramics have a perovskite structure with unifying grains. A bulk 0.9NBT–BT–0.1KNN ceramic sample with a thickness of 0.2 mm possesses a high energy storage density of 2.81 J/cm3 at an applied electric field of 180 kV/cm. Moreover, it exhibits good insulation properties and undergoes rapid charge and discharge processes. Therefore, the obtained 0.9NBT–BT–0.1KNN ceramic can be potentially used in high-power applications because of its high energy density, good insulation properties, and large discharge rate.  相似文献   

7.
WO3(0–6 mol%)-doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 lead-free ceramics were synthesized by conventional solid-state reaction. The effect of WO3 addition on the structure and electrical properties were investigated. The result revealed that a small amount of WO3 (≤1 mol%) can diffuse into the lattice and does not significantly affect the phase structure, however, more addition will result in distortion and enlargement of the unit cells. The maximum permittivity temperature (Tm) is suppressed dramatically as the dopant increasing, while the depolarization temperature (Td) fall to the minimum with 1 mol% WO3 additive. The remanent polarization (Pr) was enhanced and coercive field (Ec) was reduced by doping with WO3. The strain shows the largest value for 1 mol% doped sample, which is due to a field-induced antiferroelectric–ferroelectric phase transition.  相似文献   

8.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

9.
10.
0.92Na0.5Bi0.5TiO3–0.06BaTiO3–0.02K0.5Na0.5NbO3+x wt% Co2O3 (NBKT–xCo, x=0, 0.2, 0.4, 0.6, 0.8) lead-free ferroelectric ceramics were prepared via a conventional solid state reaction method. Effects of Co2O3 additive on crystallite structure, microstructure, dielectric and ferroelectric properties of the NBKT–xCo ceramics were studied. X-ray diffraction results showed that the rhombohedral–tetragonal morphotropic phase boundary existed in all the ceramics, with relative amount of tetragonal phase varying with the content of Co2O3. Average grain size, maximum value of dielectric constant, Curie temperature and ferroelectric properties of the ceramics were close related to the content of Co2O3. The dielectric anomaly caused by the phase transition between the ferroelectric phase and the so-called “intermediate phase” was observed in the ceramics with x≤0.2, while it disappeared with further increasing x. All the ceramics showed a diffuse phase transition between the “intermediate phase” and the paraelectric phase. The change in the ferroelectric properties with changing the content of Co2O3 was discussed by considering the competitive effects among grain size, relative amount of the tetragonal phase and oxygen vacancies.  相似文献   

11.
采用固相法制备了 Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3–BaTiO3–SrTiO3(NBT–KBT–BT–ST)陶瓷,该体系是按(1–2x)(0.8NBT–0.2KBT)–x(0.94NBT–0.06BT)–x(0.74NBT–0.26ST) (x = 0.10、0.20、0.25、0.30、0.35、0.40、0.45)组合而成的,研究了该系陶瓷的结构与电性能。结果表明:所有样品都处于三方–四方准同型相界区域。该系陶瓷在准同型相界附近表现出了优异的压电性能,压电常数 d33、机电耦合系数 kp和剩余极化强度 Pr随 x 的增加先升高后降低,其中 x=0.35 陶瓷的电性能最佳:d33= 210 pC/N,kp= 0.319,Pr= 39.3 μC/cm2,Ec= 20.2 kV/cm,是一种良好的无铅压电陶瓷候选材料。依据准同型相界组成的线性组合规律来寻找具有优异压电性能的 NBT–KBT–BT–ST 陶瓷准同型相界组成是可行的。  相似文献   

12.
One of the most promising candidates to replace lead-based compounds in actuator applications are Na0.5Bi0.5TiO3 (NBT)-based materials. K0.5Na0.5NbO3 (KNN)-modified NBT-BaTiO3 (NBT-BT) solid solutions exhibit giant large-signal strain–electric-field coefficients (Smax/Emax) exceeding 500 pm V?1. However, despite the promising properties of the ceramics reported in the literature, the synthesis of these materials remains challenging, leaving gaps in the understanding of the synthesis-property relationship. In this contribution, we investigate the microstructure and the electrical properties while changing the composition to destabilize the ferroelectric order in the material, which is the key to achieve large strain response. Measurements of dielectric and ferroelectric properties reveal that Na- or Ti-deficiency or excess of Bi decrease the ferroelectric-to-relaxor transition temperature and remnant polarization, indicating a destabilization of the ferroelectric order. Additionally, the use of KNO3 instead of K2CO3 as the potassium source in KNN results in an additional destabilizing effect on the ferroelectric order, which can be attributed to better incorporation of K+ into the perovskite structure. The results identify the key aspects of the synthesis of NBT-BT-KNN ceramics to obtain high Smax/Emax values.  相似文献   

13.
Bi0.5Na0.5TiO3xBaTiO3 (BNT–xBT) nano-powders are successfully synthesized by a modified citrate method. The as-prepared BNT-BT powders and the sintered ceramics are homogeneous with a pure perovskite crystal structure. The effects of Ba2+ substitutions for (Bi0.5Na0.5)2+ in the A-sites of Bi0.5Na0.5TiO3 on its phase transformations are explored. The transformations among ferroelectric (FE), anti-ferroelectric (AFE) and paraelectric (PE) states in these ceramics are characterized using ferroelectric hysteresis tests, modulated differential scanning calorimetry and dynamic mechanical analysis. The FE-AFE transition in BNT–xBT with 0≤x≤0.15 is found to relate with a structural transformation which is a first-order phase transition. The mechanical and thermal analyses provide evidence that AFE state (0≤x≤0.15) could be associated with the incommensurate modulation of rhombohedral structures while the mechanisms of forming AFE state in BNT–xBT (x>0.15) could be different.  相似文献   

14.
陈培  周昌荣 《硅酸盐通报》2021,40(3):970-977
采用固相烧结法制备(Bi0.5Na0.5)0.93Ba0.07Ti1-x(Nb0.5Cr0.5)xO3(摩尔分数x=0%、0.5%、1%、2%、2.5%、5%)(简称BNBT-xNC)无铅压电陶瓷,研究离子对(Nb5+-Cr3+)对0.93Bi0.5Na0.5TiO3-0.07BaTiO3(简称BNT-7BT)陶瓷微观...  相似文献   

15.
The (0.94–x)Bi0.5Na0.5TiO3–0.06BaTiO3–x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT, 0  x  0.24) solid solution ceramics were synthesized via a conventional solid–state reaction method and the correlation of phase structure, piezoelectric, ferroelectric properties and electrocaloric effect (ECE) was investigated in detail. The ECE in lead–free BNT–BT–xSBT ceramics was measured directly using a home–made adiabatic calorimeter with maximum adiabatic temperature change ΔT = 0.4 K with x = 0.08 under the electric field E = 6 kV/mm at room temperature. The position of maximum ECE was found in the vicinity of nonergodic and ergodic phase boundary, where the maximum change in entropy occurs as a result of the field–induced phase transformation between the ergodic and long–range ferroelectric phase. Besides, the mechanism for the shift of ECE peak is discussed in detail. Finally, the temperature dependence of ECE for BNT–BT–xSBT (x = 0, 0.04 and 0.08) was also investigated. This work may present a guideline for designing BNT–based ferroelectric relaxor ceramics for EC cooling technologies.  相似文献   

16.
《Ceramics International》2016,42(13):14557-14564
A series of NBT-KBT lead-free crystals with dimensions of Φ 35×10 mm were successfully grown by the TSSG method. The as-grown crystals possess rhombohedral perovskite structure at room temperature. The curves ε(T) for all crystals show two abnormal dielectric peaks. The depolarization temperatures Td derived from the first peak of curves tan δ(T) vary with the KBT content, which are 130, 150, 140, and 115 °C respectively, for (100−x)NBT−xKBT (x=5, 8, 12, 15) crystals, being well consistent with the Td obtained from the temperature dependence of kt. A notable thermal hysteresis, ΔT≈35 °C, for ferroelectric-antiferroelectric phase transition was also disclosed for 92NBT-8KBT crystal. The investigation of orientation dependence for electrical properties disclosed the dielectric parameters show weak anisotropy. The piezoelectric constants (d33) are 147, 175, 205, 238 pC/N and the values of kt are 38%, 52%, 52%, 54%, respectively for (100−x)NBT−xKBT (x=5, 8, 12, 15) crystals.  相似文献   

17.
We have investigated the Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 (NBT–KBT) system, with its complex perovskite structure, as a promising material for piezoelectric applications. The NBT–KBT samples were synthesized using a solid-state reaction method and characterized with XRD and SEM. Room-temperature XRD showed a gradual change in the crystal structure from tetragonal in the KBT to rhombohedral in the NBT, with the presence of an intermediate morphotropic region in the samples with a compositional fraction x between 0.17 and 0.25. The fitted perovskite lattice parameters confirmed an increase in the size of the crystal lattice from NBT towards KBT, which coincides with an increase in the ionic radii. Electrical measurements on the samples showed that the maximum values of the dielectric constant, the remanent polarization and the piezoelectric coefficient are reached at the morphotropic phase boundary (MPB) (? = 1140 at 1 MHz; Pr = 40 μC/cm2; d33 = 134 pC/N).  相似文献   

18.
Ceramics with perovskite-type structure and 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 (BNBT) composition have been studied by conventional powder X-ray diffraction in Bragg–Brentano geometry. Ceramics were obtained from sol–gel autocombustion nanopowders and processed either by hot pressing and subsequent recrystallisation or pressureless sintering in two steps. These methods provided single-phase, sub-micron grain size (<700?nm), dense ceramics with good piezoelectric performance (96–94% of theoretical density and d33?=?143–124?pC?N–1, respectively). For the considered ceramics, the splitting of the peaks of the cubic perovskite-type structure with 111 and 200 Miller indices has been repeatedly used as a symmetry identification criterion. In this work a simple, yet powerful, procedure to validate the consistency of the mentioned splitting interpretation is presented. Based on peaks fitting and well-known crystallographic expressions, the rhombohedral and tetragonal symmetries' coexistence is verified. The suggested procedure can be applied to the study of peak splitting in ceramics at Morphotropic Phase Boundaries in a general way. In a given series of BNBT ceramics, inconsistencies for interplanar distances, intensities' ratios and the evolution of these from not-poled to poled samples have been found. In poled ceramics, special care has been taken when carrying out this analysis, due to the anisotropic strains arising from ferroelectric (FE) domain orientation. Poling gives rise to a displacement of the peaks angular positions and modification of the intensity ratios. However, the interplanar distance changes associated with the angular deviations here observed are one order of magnitude higher than those expected from anisotropic strains. These results set up a doubt on the sufficiency of the [rhombohedral?+?tetragonal] model to characterise the considered ceramics. A model of a mesoscopic FE phase with rhombohedral symmetry, a mesoscopic and globally weakly polar phase, with cubic symmetry, and a nanosised phase, also cubic, is presented as a plausible alternative.  相似文献   

19.
The effects of composition, sintering temperature and dwell time on the microstructure and electrical properties of (0.75 ? x)BiFeO3–0.25BaTiO3xBi0.5K0.5TiO3 + 1 mol% MnO2 ceramics were studied. The ceramics sintered at 1000 °C for 2 h possess a pure perovskite structure and a morphotropic phase boundary of rhombohedral and pseudocubic phases is formed at x = 0.025. The addition of Bi0.5K0.5TiO3 retards the grain growth and induces two dielectric anomalies at high temperatures (T1  450–550 °C and T2  700 °C, respectively). After the addition of 2.5 mol% Bi0.5K0.5TiO3, the ferroelectric and piezoelectric properties of the ceramics are improved and very high Curie temperature of 708 °C is obtained. Sintering temperature has an important influence on the microstructure and electrical properties of the ceramics. Critical sintering temperature is 970 °C. For the ceramic with x = 0.025 sintered at/above 970 °C, large grains, good densification, high resistivity and enhanced electrical properties are obtained. The weak dependences of microstructure and electrical properties on dwell time are observed for the ceramic with x = 0.025.  相似文献   

20.
《Ceramics International》2019,45(12):14921-14927
0.5Bi0·5Na0·5TiO3-0.5SrTiO3-x wt% MgO (x = 0, 0.5, 1.0, 1.5, 2.0, 3.0) ceramics were fabricated via solid-state method. The effect of MgO doped on energy storage properties, dielectric performance, phase structure and microstructures of 0.5Bi0·5Na0·5TiO3-0.5SrTiO3 (BNST) ceramics were studied systemically. The Mg2+ substituted Ti4+ site in BNST, which was confirmed by X-ray diffraction (XRD) result. The scanning electron microscope (SEM) images show that all the ceramic samples exhibit uniform and compact morphologies. The temperature dependent permittivity exhibits frequency dispersion, indicating that the ceramic samples are typical relaxor ferroelectrics. It was found that MgO doped BNST can significant improve the breakdown strength (Eb) of samples from 109 kV/cm to 227 kV/cm, which results in a great enhancement on energy storage density. The sample of x = 3.0 has the largest energy storage density (2.17 J/cm3), which is twice as much as the BNST. Consequently, we consider that MgO-doped BNST ceramics are able to be a promising candidate in the field of pulsed-power devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号