首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we have reported microstructures and the dielectric properties of CaCu3Ti4O12 (CCTO) ceramics doped with different proportions of TeO2 dopant (mol%, x=0, 0.5%, 1.0%, 2.0%). The pure and tellurium doping CCTO ceramics were prepared by a conventional solid-state reaction method and the effects of TeO2 doping on the electrical properties and microstructures of these ceramics were investigated. XRD analysis confirmed the formation of single-phase material in samples. Scanning electron microscopy (SEM) is used in the micro structural studies of the specimens, which showed that TeO2 doping can reduce the mean grain size and increasing size of an abnormal grain growth. Lattice parameter increases slightly with tellurium doping in CCTO, the dielectric constant reached a value as high as 18,000 (at 1 kHz) at a tellurium-doping concentration of 2.0 mol% and showed temperature stability at high frequency. The loss tangent of Te-doped CCTO ceramics was less than 0.05 at 1 kHz region below 105 °C. The loss tangent properties could be interpreted by the internal barrier layer capacitor model and the impedance measurement data.  相似文献   

2.
The dielectric properties of Cr + La co-doped CaCu3Ti4O12 ceramics prepared by a solid-state reaction method were evaluated and compared to Cr-doped, La-doped, and parent CaCu3Ti4O12 (CCTO). Their structure and grain size were evaluated by X-ray diffraction and scanning electron microscopy, respectively. No secondary phase was detected based on the XRD analysis. The results show that, the room temperature dielectric loss of the co-doped samples is reduced to 43% compared to CCTO and their dielectric permittivity is higher than the un-doped, Cr-doped, and La-doped samples at frequencies over 325 kHz, 30 kHz, and 12 Hz, respectively. Furthermore, the temperature stability of the co-doped sample is significantly more convenient than that of CCTO, and its dielectric loss is three times lower. The results also indicated that the co-doping method is effective in reducing the dielectric loss, still maintaining the high dielectric permittivity.  相似文献   

3.
CaCu3(Ti4?xHfx)O12 ceramics (x = 0.04, 0.1 and 0.2) were prepared by conventional synthesis (CS) and through reactive sintering (RS), in which synthesis and sintering of the material take place in one single step. The microstructure and the dielectric properties of Hf-doped CCTO (CCTOHf) have been studied by XRD, FE-SEM, AFM, Raman and impedance spectroscopy (IS) in order to correlate the structure, microstructure and the electrical properties. Samples prepared by reactive sintering show slightly higher dielectric constant than those prepared by conventional synthesis in the same way than the pure CCTO. Dielectric constant and dielectric losses decrease slightly increasing Hf content. For CCTOHf ceramics with x > 0.04 for CS and x > 0.1 for RS, a secondary phase HfTiO4 appears. As expected, the reactive sintering processing method allows a higher incorporation of Hf in the CCTO lattice than the conventional synthesis one.  相似文献   

4.
In this study, CaCu3Ti4O12 (CCTO) ceramics were doped with cesium and cerium atoms to possibly improve the electrical properties of these widely used ceramics. In all cases, pure phase perovskites were produced where cesium doping enhanced the grain growth and cerium doping produced grain growth inhibition. The cesium doping showed an improvement in loss tangent performance, in contrast to the cerium doping which showed a negative result. A high dielectric constant >15,000 with a dielectric loss lower than 0.06 was observed for cesium 2.0 mol% doped at high frequencies. These results were related to the change in microstructure and the properties of grain boundary after doping.  相似文献   

5.
《Ceramics International》2017,43(9):6891-6897
Transparent magnesium aluminate spinel (MgAl2O4) ceramics were fabricated by hot-pressing of the MgO and α-Al2O3 powder mixture using LiF as a sintering aid. Effects of the LiF additive on densification, microstructure and optical properties of MgAl2O4 ceramics were systematically investigated. It has been found that the addition of LiF can effectively remove the porosity and increase the optical transparency of MgAl2O4 ceramics. For the spinel ceramics HP-ed at 1550 °C for 3 h with 1 wt% LiF addition, the average grain size is about 36 µm and the in-line transmittance exceeds 60% at the wavelength of 800 nm.  相似文献   

6.
CaCu3Ti4O12 (CCTO) ceramics have been processed by solid state reaction and sintered at 1100 °C for different times. A clear increase of the dielectric constant of the material up to values of 6 × 104 has been observed with the sintering time. This increase is accompanied by a limited grain growth and intergranular Cu-oxide phase thickness reduction. The disappearance of the Cu-oxide phase is caused by the incorporation of Cu cations into the grains, contributing to the increase of the dielectric constant. Raman spectroscopy shows the decrease of TiO6 octahedral rotational modes with the sintering time due to the incorporation of Cu cations into the CCTO grains. XANES measurements show that the Cu main oxidation state is Cu2+ and does not change with the sintering time. The fitting of the experimental dielectric constant to the Internal Barrier Layer Capacitance (IBLC) model reveals the change of the intergranular phase dielectric constant, caused by a compositional change due to the incorporation of Cu into the CCTO grains.  相似文献   

7.
《Ceramics International》2017,43(15):12057-12060
Transparent Sm:Y2O3 ceramics were fabricated by spark plasma sintering (SPS). The effects of LiF additive and sintering temperature on the microstructure and optical transmittance of the Sm:Y2O3 ceramics were investigated. The optimal content of LiF additive and sintering temperature was found to be 0.3 wt% and 1500 ℃. The transmittance of Sm:Y2O3 ceramics with a thickness of 1.7 mm reached 75.3% at 609 nm, which is about 94% of the theoretical value. The average grain size of the sample was about 50 µm.  相似文献   

8.
SiC ceramics were prepared from nanosized β-SiC powder with different compositions of AlN and Y2O3 sintering additives by spark plasma sintering (SPS) at 1900 °C for 600 s in N2. The relative density of the sintered SiC specimens increased with increasing amount of AlN, reaching a relative density higher than 99%, while at the same time grain size decreased significantly. The smallest average grain size of 150 nm was observed for SiC sample sintered with 10 vol% of additives consisting of 90 mol% AlN and 10 mol% Y2O3. Fully dense nanostructured SiC ceramics with inhibited grain growth were obtained by the AlN additive and SPS technique. The flexural strength of the SiC body containing 70 mol% AlN and 30 mol% Y2O3 additives reached the maximum value of 1000 MPa. The SiC bodies prepared with AlN and Y2O3 additives had the fracture toughness of around 2.5 MPam1/2.  相似文献   

9.
The abnormal grain growth (AGG) behavior of undoped and SiO2-doped CaCu3Ti4O12 (CCTO) ceramics were investigated. With the addition of 2 wt.% SiO2, the AGG-triggering temperature decreased from 1100 to 1060 °C, and the temperature for obtaining a uniform and coarse microstructure decreased from 1140 to 1100 °C. The lowering of the AGG temperature by SiO2 addition was attributed to the formation of a CuO-SiO2-rich intergranular phase at lower temperature. The apparent dielectric permittivity of coarse SiO2-doped CCTO ceramics was ∼10 times higher than that of fine SiO2-doped CCTO ceramics at the frequency of 103–105 Hz. The doping of SiO2 to CCTO ceramics provides an efficient route of improving the dielectric properties via grain coarsening. The correlation between the microstructure and apparent permittivity suggests the presence of a barrier layer near the grain boundary.  相似文献   

10.
The formation of the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics was found to be facilitated by the ceramic heat treatment. Electrically insulating grain boundary (GB) and semi-conducting grain interior areas were characterized by impedance spectroscopy to monitor the evolution of the IBLC structure with increasing sintering temperature TS (975–1100 °C). The intrinsic bulk and GB permittivity increased by factors of ≈2 and 300, respectively and the bulk resistivity decreased by a factor of ≈103. These trends were accompanied by increased Cu segregation from the CCTO ceramics as detected by scanning electron microscopy and quantitative energy dispersive analysis of X-rays. The chemical changes due to possible Cu-loss in CCTO ceramics with increasing TS are small and beyond the detection limits of X-ray absorption spectroscopy near Cu and Ti K-edges and Raman Spectroscopy.  相似文献   

11.
《Ceramics International》2017,43(12):9178-9183
Low temperature preparation of CaCu3Ti4O12 ceramics with large permittivity is of practical interest for cofired multilayer ceramic capacitors. Although CaCu3Ti4O12 ceramics have been prepared at low temperatures as previously reported, they have rather low permittivity. This work demonstrates that CaCu3Ti4O12 ceramics can not only be prepared at low temperatures, but they also have large permittivity. Herein, CaCu3Ti4O12 ceramics were prepared by the solid state reaction method using B2O3 as the doping substance. It has been shown that B2O3 dopant can considerably lower the calcination and sintering temperatures to 870 °C and 920 °C, respectively. The relative permittivity of the low temperature prepared CaCu3Ti4−xBxO12 ceramics is about 5 times larger than the previously reported results in the literature. Furthermore, the dielectric loss of the CaCu3Ti4−xBxO12 ceramics is found to be as low as 0.03. This work provides a beneficial base for the future commercial applications of CaCu3Ti4O12 ceramics with large permittivity for the cofired multilayer ceramic capacitors.  相似文献   

12.
《Ceramics International》2017,43(8):6363-6370
The influence of partial replacement of Ti4+ ions by Te4+ in calcium copper titanate lattice on dielectric and non-linear current- voltage (I–V) characteristics was systematically studied. There was a remarkable increase in the values of the nonlinear coefficient (α) with Te4+ doping concentration in CaCu3Ti4-xTexO12 (where, x=0, 0.1, 0.2).For instance, the α values increase from 2.9 (x=0) to 22.7 (x=0.2) for ceramics sintered at 1323 K/8 h. The room temperature value of current density (J) at the electrical field of 250 V/cm for CaCu3Ti3.8Te0.2O12 ceramics is almost 400 times higher than that of the pure CaCu3Ti4O12 ceramics sintered at 1323 K. A systematic investigation into I–V behaviour as a function of temperature gave an insight into the conduction mechanisms of undoped and doped ceramics of calcium copper titanate (CCTO). The calculated potential barrier value for doped ceramics (~ 0.21 eV) dropped down to almost one third that of the undoped ceramics (~ 0.63 eV).  相似文献   

13.
《Ceramics International》2017,43(5):4366-4371
CaCu3−xRuxTi4O12 (x=0, 0.03, 0.05 and 0.07) electronic ceramics were fabricated using a conventional solid-state reaction method. The microstructure, grain sizes and dielectric properties as well as the impedance behaviours of the ceramics were carefully investigated. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) results indicate that ruthenium (Ru) dopant inhibits the growth of grains during the sintering process by promoting the formation of high melting point oxides of Ca and Ti. The study on the frequency dependence of dielectric properties suggests that Ru doping shifts the dielectric loss peak of CCTO to a much lower frequency, thereby reducing the dielectric loss of CCTO at high frequency (f>1.0 MHz) accordingly. When doped with proper amount of Ru, the high frequency dielectric loss of CCTO is reduced to a very low value (tanδ<0.05). Our study conclusively suggests that Ru-doped CCTO, with sufficiently low dielectric loss and decent permittivity, presents potential applications at high frequency.  相似文献   

14.
《Ceramics International》2016,42(9):10866-10871
The effects of Mn-doping on CaCu3Ti4O12 (CCTO), i.e. the electrical properties of CaCu3Ti(4−x)MnxO12 were studied in order to get a deep insight into the origin of the colossal dielectric constant of CCTO. It was found that 1 mol% substitution of Mn for Ti decreases the dielectric constant largely to a factor of 1/100, supporting the point of view that the native defects are responsible for the dielectric response of CCTO.  相似文献   

15.
《Ceramics International》2016,42(4):4978-4983
The supercapacitor based piezoelectric material composite (Na,K)NbO3–CaCu3Ti4O12 (NKN–CCTO) is investigated for possible application in piezoelectric devices. (1−x)NKN–xCCTO (0.015≤x≤0.06) with different sintering conditions is researched for supercapacitor based piezoelectric applications. The 0.94NKN–0.06CCTO composite sintered at 975 °C shows the highest dielectric permittivity of 796. Clear SEM images of (1−x)NKN–xCCTO reveal that these compositions have high density well-crystallized structures. The composition and sintering temperature dependence of dielectric permittivities and piezoelectric coefficients, plotted in three dimensions, show that the 0.985NKN–0.015CCTO composite sintered at 1025 °C has a moderate dielectric permittivity of 405 and a piezoelectric constant of 98 pC/N.  相似文献   

16.
The influences of Ga3+ doping ions on the microstructure, dielectric and electrical properties of CaCu3Ti4O12 ceramics were investigated systematically. Addition of Ga3+ ions can cause a great increase in the mean grain size of CaCu3Ti4O12 ceramics. This is ascribed to the ability of Ga3+ doping to enhance grain boundary mobility. Doping CaCu3Ti4O12 with 0.25 mol% of Ga3+ caused a large increase in its dielectric constant from 5439 to 31,331. The loss tangent decreased from 0.153 to 0.044. The giant dielectric response and dielectric relaxation behavior can be well described by the internal barrier layer capacitor model based on Maxwell?Wagner polarization at grain boundaries. The nonlinear coefficient, breakdown field, and electrostatic potential barrier at grain boundaries decreased with increasing Ga3+ content. Our results demonstrated the importance of ceramic microstructure and electrical responses of grain and grain boundaries in controlling the giant dielectric response and dielectric relaxation behavior of CaCu3Ti4O12 ceramics.  相似文献   

17.
《Ceramics International》2015,41(7):8520-8532
Pure and Co-modified BaZr0.05Ti0.95O3 ceramics were fabricated by the traditional solid state reaction technique. The influence of cobalt and sintering temperature on structure, dielectric, ferroelectric properties and diffuse phase transition of BZT ceramics were investigated systematically. 1300 °C was the optimal sintering temperature for BZT ceramics. The solid solubility limit of Co ions in BZT matrix was determined to be 0.4 mol%. The introduction of a moderate amount of Co ions was believed to benefit the microstructure development and make the grain size more uniform. Compared with undoped counterparts, 0.4 mol% Co-modified ceramics showed equivalent ferroelectric properties with a high remnant polarization (Pr=9.6 μC/cm2) and a low coercive field (Ec=0.21 kV/mm). Besides these, a relative high dielectric coefficient (εr=2030) and a low dielectric loss (tan δ=1.85%) were also obtained on this composition. The degree of diffuse phase transition was enhanced by the addition of Co ions. The related mechanism of the diffused phase transition behavior was discussed.  相似文献   

18.
《Ceramics International》2017,43(10):7522-7530
Low-loss novel Li4Mg3Ti2O9 dielectric ceramics with rock-salt structure were prepared by a conventional solid-state route. The crystalline structure, chemical bond properties, infrared spectroscopy and microwave dielectric properties of the abovementioned system were initially investigated. It could be concluded from this work that the extrinsic factors such as sintering temperatures and grain sizes significantly affected the dielectric properties of Li4Mg3Ti2O9 at lower sintering temperatures, while the intrinsic factors like bond ionicity and lattice energy played a dominant role when the ceramics were densified at 1450 °C. In order to explore the origin of intrinsic characteristics, complex dielectric constants (ε and ε’’) were calculated by the infrared spectra, which indicated that the absorptions of phonon oscillation predominantly effected the polarization of the ceramics. The Li4Mg3Ti2O9 ceramics sintered at 1450 °C exhibited excellent properties of εr=15.97, Q·f=135,800 GHz and τf=−7.06 ppm/°C. In addition, certain amounts of lithium fluoride (LiF) were added to lower the sintering temperatures of matrix. The Li4Mg3Ti2O9−3 wt% LiF ceramics sintered at 900 °C possessed suitable dielectric properties of εr=15.17, Q·f =42,800 GHz and τf=−11.30 ppm/°C, which made such materials promising for low temperature co-fired ceramic applications (LTCC).  相似文献   

19.
The effects of Bi4Ti3O12 addition on the microstructure and dielectric properties of Mn-modified BaTiO3 were investigated to develop low temperature fired BaTiO3-based ceramics with stable temperature characteristics. The sintering temperature of Mn-doped BaTiO3 could be reduced to 1200 °C by adding more than 1 mol% Bi4Ti3O12. TEM results show an apparent core–shell structure with 2 mol% Bi4Ti3O12 addition. However, it was destroyed when the Bi4Ti3O12 content increased from 2 to 4 mol%. The permittivity decreased and the Curie temperature shifted to higher temperature when the Bi4Ti3O12 content increased from 0 to 3 mol%. The temperature characteristic of capacitance was very close to the EIA X8R specification when 2 mol% Bi4Ti3O12 was added due to the presence of the core–shell grain structure and raised Curie temperature. With adequate Bi4Ti3O12 addition, the BaTiO3-based system shows great potential for applications in EIA X8R-type multilayer ceramic capacitors.  相似文献   

20.
《Ceramics International》2016,42(12):13625-13634
The purpose of this research was to develop BaFe9.5Al1.5CrO19-xCaCu3Ti4O12 nanocomposites (x=10%, 20%, 30%, 40%, 50%) and investigate their structural and magnetic features. The substituted barium hexaferrite (BaFe9.5Al1.5CrO19) nanoparticles and calcium copper titanate (CaCu3Ti4O12) particles were synthesized by the auto-combustion sol-gel method. The structural, chemical composition and morphology of CaCu3Ti4O12 (CCTO) and the nanocomposites were investigated by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The magnetic and microwave properties of nanocomposites were also investigated by vibrating sample magnetometer and vector network analyzer, respectively. The results confirmed that 1100 °C is the optimum synthesis temperature for CCTO, the mean particles size of the CCTO particles changing from 220 nm (at 850 °C) to 2.18 µm (1250 °C). The SEM micrograph revealed that in all of the BaM-xCCTO nanocomposites (x=10%, 20%, 30%, 40%, 50%), the CCTO dielectric particles were attached to the substituted barium hexaferrite nanoparticles, indicating the effectiveness of the adopted synthesis method. Due to the presence of a dielectric phase in the nanocomposites the saturation magnetization decreases from 22 emu/g to 12 emu/g. The coercive field was a slightly larger than substituted barium hexaferrite and increased from 5.558 kOe for substituted barium hexaferrite to 5.813 kOe for BaM-50CCTO due to hindered motion of the domain walls by the dielectric phase and also to the collective behavior of agglomerated barium ferrite nanoparticles. The BaM-30CCTO nanocomposite shows the highest value of reflection loss compared to other nanocomposites. The reflection dip frequency of BaM-30CCTO nanocomposite was −48.85 dB at 10.93 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号