共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2020,46(4):4824-4831
The thermal barrier coating obtained by atmospheric plasma spraying (APS TBCs) has a distinct lamellar microstructure, in which the splats discontinuous interfaces running parallel to the metal/ceramic interface contribute largely to the reduction in the effective thermal conductivity of APS TBCs. The dependency of such contribution on the topological structure of the interface discontinuity is investigated in the present work. Firstly, the concept of discontinuity of splats interfaces was defined to quantify the splats discontinuous interfaces revealed by microscopic observations. Then, the microstructure model with a random distribution of discontinuous interfaces was established by utilizing the finite element simulation method to investigate the effect of interlayer discontinuity on thermal conductivity of the APS TBCs. Finally, an optimal topological structure of the interface discontinuity was found to be responsible for the lowest effective thermal conductivity of the APS TBCs and typical parametrical tendencies demonstrated. 相似文献
2.
The sintering behavior of plasma-sprayed yttria-stabilized zirconia (YSZ) coating over the delamination crack and its influence on YSZ cracking were investigated via gradient thermal cycling test and finite element model (FEM). The gradient thermal cycling test was performed at a peak surface temperature of 1150 °C with a duration of 240 s for each cycle. A three-dimensional model including delamination cracks with different lengths was employed to elaborate the temperature evolution characteristics in YSZ coating over the delamination cracks. The temperature over the delamination crack increases linearly with the crack propagation, which continuously promotes the sintering of YSZ coating in the region. As a result, the YSZ coating over the delamination crack sinters dramatically despite of the low temperature exposure. Meanwhile, the temperature distribution difference in YSZ coating induces an nonuniform sintering along both free surface and thickness of YSZ coating. Correspondingly, the maximum vertical crack driving force locates at the YSZ free surface over the delamination crack center, which makes the vertical cracks generate in this region and propagate to the interface of YSZ /bond coat with YSZ further sintering. The vertical crack promotes the delamination crack propagation via accelerating the oxidation velocity of the bond coat. The influence of temperature rise on delamination crack propagation can be divided into two stages: the little contribution stage and the promotion stage. For the actual engine exposure to low temperature, the study of phase transformation of YSZ over the delamination crack is indeed needed because of an extended remarkable temperature rise period. 相似文献
3.
《Journal of the European Ceramic Society》2020,40(4):1424-1432
Thermal cycling failure of three multilayer TBCs based on LaMgAl11O19 (LaMA)/YSZ was comparatively investigated by using the burner-rig testing method in this work. Results indicate that through optimizing the weight ratio and thickness of the intermediate LaMA/YSZ composite layers, a five-layer TBC with much improved thermal cycling life of 11,749 cycles at 1372 °C surface and 1042 °C bond coat testing temperature has been realized. While, thermal cycling lifetimes of the tri- and six-layer TBCs were 7439 and 7804 cycles at surface/bond coat testing temperatures of 1378 °C/1065 °C and 1367 °C/1056 °C, respectively. Factors related to the 60 wt.% LaMA + 40 wt.% YSZ (60LaMA + 40YSZ) intermediate composite layer with the highest thermal expansion coefficient than other composite layers generating higher internal stress level to the tri- and six-layer TBCs, different bond coat temperature and TGO growth, as well as long-term stability of the LaMA coating during thermal cycling tests, were characterized and compared to understand the different thermal cycling lifetime and failure modes among such three multilayer TBCs. 相似文献
4.
Ji Bo Huang Wei Ze Wang Yuan Jun Li Huan Jie Fang Dong Dong Ye Xian Cheng Zhang Shan Tung Tu 《Ceramics International》2021,47(4):5156-5167
The microstructure of the ceramic topcoat has a great influence on the service performance of thermal barrier coatings (TBCs). In this study, conventional layered-structure TBCs, nanostructured TBCs, and novel-structured TBCs with a unique microstructure were fabricated by air plasma spraying. The relationship between the microstructure and properties of the three different TBCs was analysed. Their thermal insulation ability, sintering resistance, and durability were systematically evaluated. Additionally, their failure modes after being subjected to two kinds of thermal shock tests were analysed. The results revealed that the novel-structured TBCs had remarkably superior performances in all the examined aspects. The thermal conductivity of the novel-structured TBCs was significantly lower than those of the conventional and nanostructured TBCs both in the as-sprayed state and after thermal treatment for 500 h at 1100 °C. The macroscopic elastic modulus of the novel-structured TBCs after sintering at 1300 °C for 100 h was similar to those of the conventional and nanostructured TBCs in the as-sprayed state. During both a burner rig thermal shock test and a furnace cyclic oxidation test, the thermal shock lifetime of the novel-structured TBCs was much longer than those of the conventional and nanostructured TBCs. This study has demonstrated novel-structured plasma-sprayed TBCs with high thermal insulation ability and high durability. 相似文献
5.
《Ceramics International》2016,42(7):7950-7961
A composite coating composed of La2Ce2O2 (LCO) and yttria-stabilized zirconia (YSZ) in a weight ratio of 1:1 was deposited by the plasma spraying using a blended YSZ and LCO powders, and the stability of the LCO/YSZ interface exposed to a high temperature was investigated. The LCO/YSZ deposits were exposed at 1300 °C for different durations. The microstructure evolution at the LCO/YSZ interface was investigated by quasi-in-situ scanning electron microscopy assisted by X-ray energy-dispersive spectrum analyses and X-ray diffraction measurements. At an exposure temperature of 1300 °C, the grain morphology of LCO splats in contact with YSZ splats changed from columnar grains to quasi-axial grains with interface healing, and some grains tended to disappear during the thermal exposure. The results indicate that the phases in LCO–YSZ composite coating are not stable at 1300 °C. The element La in the LCO splat diffused towards the adjacent YSZ splat during the exposure, generating the reaction product layers composed of La2Zr2O7 between the LCO and YSZ splats. After exposed for 200 h, the composite coating consisted of a mixture of mainly La2Zr2O7 and CeO2 and a minor amount of YSZ, accounting for the unusual decrease in the thermal conductivity at the late stage of exposure. 相似文献
6.
《Ceramics International》2016,42(13):14374-14383
Nanostructured scandia, yttria doped zirconia (5.5SYSZ), 7 wt% yttria stabilized zirconia (7YSZ) and 15YSZ thermal barrier coatings (TBCs) were produced by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal stability and sintering behavior of the three as-sprayed TBCs at 1480 °C were investigated. The results indicated that the thermal stability of SYSZ and TBCs was longer than the 7YSZ TBCs due to higher amount of tetragonal phase. Furthermore, the results demonstrated that the nanostructured 7YSZ coating exhibits higher sintering resistance than 5.5SYSZ TBC. 相似文献
7.
Failure of the plasma-sprayed coating of lanthanum hexaluminate 总被引:1,自引:0,他引:1
X.Q. Cao Y.F. Zhang J.F. Zhang X.H. Zhong Y. Wang H.M. Ma Z.H. Xu L.M. He F. Lu 《Journal of the European Ceramic Society》2008,28(10):1979-1986
Lanthanum magnesium hexaluminate (LaMgAl11O19, LMA) is an attractive material for thermal barrier coatings (TBCs), and the failure of its coating was studied in this work by thermal cycling, X-ray diffraction, dilatometric measurement and thermal gravimetric-differential thermal analysis. The dilatometric measurement indicates that even though the bulk material of LMA has a higher sintering-resistance than the typical TBC material, i.e. yttria-stabilized zirconia (YSZ), the plasma sprayed coating of LMA has two serious contractions due to the re-crystallization of LMA and phase transitions of alumina. LMA has similar thermal expansion behaviour with alumina, leading to a good thermal expansion match between LMA and the thermally grown oxide layer. On the other hand, the plate-like structure of LMA not only results in a low thermal conductivity, low Young's modulus, but also a high stress tolerance, and these are believed to be the reasons for the long thermal cycling life of LMA coating. 相似文献
8.
Yongchao Fang Xiufang Cui Guo Jin Bingwen Lu Fuyuan Wang Ming Liu Xin Wen 《Ceramics International》2018,44(15):18285-18293
The initiation and propagation of cracks under thermal stresses easily is one of the problems limiting the thermal cycling lifetime of thermal barrier coatings (TBCs). In order to improve the thermal cycling lifetime, SiC fibers were introduced to yttria stabilized zirconia (YSZ) coating deposited on In738LC substrate by atmospheric plasma spray (APS). Phase composition, thermal cycling behaviors and fiber toughening mechanisms of coatings were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal cycling test. Results showed that the thermal cycling lifetime and fracture toughness of SiC fibers/YSZ coatings could reach 442?±?13 and 1.54?±?0.19?MPa respectively, which were 1.6 times and 1.3 times higher than that of conventional TBCs. There are two stages of fiber reinforced during thermal cycling, and the first is crack deflection and termination, the second is fiber debonding, pull-out, breakage and bridging. Meanwhile, SiC fibers could prevent the stress-activated ZrO2 martensitic transformation by reducing the stress in the lattice. 相似文献
9.
《Ceramics International》2019,45(15):18255-18264
Thermal Barrier Coatings (TBCs) play a significant role in improving the efficiency of gas turbines by increasing their operating temperatures. The TBCs in advanced turbine engines are prone to silicate particles attack while operating at high temperatures. The silicate particles impinge on the hot TBC surfaces and melt to form calcia-magnesia-aluminosilicate (CMAS) glass deposits leading to coating premature failure. Fine powder of CMAS with the composition matching the desert sand has been synthesized by solution combustion technique. The present study also demonstrates the preparation of flowable yttria-stabilized zirconia (YSZ) and cluster paired YSZ (YSZ-Ln2O3, Ln = Dy and Gd) powders by single-step solution combustion technique. The as-synthesized powders have been plasma sprayed and the interaction of the free standing TBCs with CMAS at high-temperatures (1200 °C, 1270 °C and 1340 °C for 24 h) has been investigated. X-ray diffraction analysis of CMAS attacked TBCs revealed a reduction in phase transformation of tetragonal to monoclinic zirconia for YSZ-Ln2O3 (m-ZrO2: 44%) coatings than YSZ (m-ZrO2: 67%). The field emission scanning electron microscopic images show improved CMAS resistance for YSZ-Ln2O3 coatings than YSZ coatings. 相似文献
10.
In this study, sintering behaviour of plasma-sprayed thermal barrier coatings (PS-TBCs) was investigated experimentally and theoretically. Results show that the sintering kinetics of PS-TBCs is highly stage-sensitive. The sintering proceeds significantly faster at initial short thermal exposure (<20 h), while it slows down dramatically at following long thermal exposure. A detailed examination on microstructural evolution of the PS-TBCs was carried out to understand their sintering behaviour. Results show that, different from the conventional sintering theory, the healing of 2D pores was dominantly responsible for the stage-sensitive sintering kinetics during thermal exposure. In brief, the sintering characteristics of the PS-TBCs are highly structure specific. In addition, a structural model was developed based on the structural characteristics of the PS-TBCs; and the model predicts a well consistent sintering behaviour with experiments. Finally, an outlook towards TBCs with higher performance was put forward. 相似文献
11.
《Journal of the European Ceramic Society》2020,40(4):1443-1452
The nanostructured 8YSZ thermal barrier coatings were deposited by atmospheric plasma spraying onto K417 G nickel-based superalloy with high velocity oxygen fuel sprayed NiCoCrAlYCe bond-coat using as-prepared nanostructured t´-Zr0.9Y0.1O1.95 feedstocks for the first time. The microstructure and mechanical properties of nanostructured and conventional 8YSZ coatings were comparatively investigated systematically. The results revealed that both coatings were composed of t´-Zr0.9Y0.1O1.95 phase and the formation mechanism of t´ phase was elucidated. The nanostructured 8YSZ coatings demonstrated typical bi-modal microstructure, whereas the conventional 8YSZ coatings exhibited mono-modal microstructure. Furthermore, the bi-modal microstructure of nanostructured 8YSZ coatings was analysed by elastic modulus and nanohardness Weibull distribution plots. The high and low slopes in Weibull distribution plots corresponded to unmelted and melted regions of nanostructured 8YSZ coatings, respectively. The fracture toughness and bonding strength of nanostructured coatings were higher than that of conventional 8YSZ coatings. Finally the reasons were explained in detail. 相似文献
12.
Bowen Lv Robert Mücke Xueling Fan T.J. Wang Olivier Guillon Robert Vaßen 《Journal of the European Ceramic Society》2018,38(15):5092-5100
Sintering is one of the key issues in the high temperature service of thermal barrier coatings (TBCs), considering the continuously increasing operation temperature of gas-turbine for higher energy efficiency. Based on the conventional processing method of air plasma spraying (APS), suspension plasma spraying (SPS) technique has been developed recently, in order to improve the strain tolerance of TBCs. This strain tolerance of plasma-sprayed TBCs is largely effected by the sintering behavior, which is presently not fully understood. In this work, evolution of mechanical properties, in terms of Young’s modulus and viscosity, is systematically investigated by in-situ three-point bending test at 1200?°C on free-standing coatings, including micro-cracked APS, segmented APS, vertically cracked SPS and columnar structured SPS TBCs and correlated to the microstructural evolution. Based on experimental results, power law relations are proposed for the sintering induced mechanical evolution, which deepen the understanding of the sintering behavior of plasma-sprayed TBCs. 相似文献
13.
《Ceramics International》2017,43(13):9600-9615
Nanostructured thermal barrier coatings (TBCs) are being widely researched for their superior thermal barrier effect and strain compliance. However, the sintering occurs inevitably in nanostructured TBCs that comprise both nanozones and lamellar zones, although the mechanism of sintering in such bimodal coatings is not yet clear. This study investigates the changes in microstructure and properties of nanostructured TBCs during thermal exposure with the aim to reveal the sintering mechanism operative in these coatings. Results show that the sintering process occurs in two stages. It was found that in the initial shorter stage (~0–10 h), the properties increased rapidly; moreover, this change was anisotropic. The main structural change was the significant healing of the intersplat pores through multiconnection. During the subsequent longer stage, the change in the properties was much smaller, where it was observed that the pores continued to heal, albeit at a much lower rate. Furthermore, the faster densification of the nanozones induced during sintering became significant, resulting in an opening at the interface between the nanozones and the lamellar zones. In brief, the pore healing at the lamellar zones affects the properties, especially in the initial stage. The presence of nanozones has a positive effect in that the performance degradation during the overall thermal exposure is slowed down. An understanding of this competing sintering mechanism would enable the structural tailoring of nanostructured TBCs in order to increase their thermal insulation and thermal cycling lifetime. 相似文献
14.
《Journal of the European Ceramic Society》2022,42(10):4369-4376
Zircon is a ceramic material that decomposes at high temperature, limiting its use by conventional thermal spraying. In this work, it is intended to use thermal spraying from concentrated aqueous suspensions to evaluate the possibility of obtaining coatings in which a significant proportion of zircon could be preserved. For this purpose, stable concentrated suspensions of zircon have been prepared, which have been subsequently sprayed at two different spraying distances. The coatings were characterised in terms of microstructural features and the amount of zircon present in the coatings was quantified. All the coatings obtained display the typical microstructure derived from the deposition of liquid feedstocks by plasma spraying. In all cases, the XRD analysis demonstrates the partial decomposition of zircon into zirconia and residual silica, but also that a significant percentage (about 20%) is preserved without decomposing, which marks a strong difference with respect to reported data for atmospheric plasma spraying. 相似文献
15.
《Ceramics International》2017,43(2):2252-2266
The thermal mismatch stress, as well as residual stress, in coating/substrate systems often leads to structural changes and subsequent coating debonding in the systems. This study focused on the changes induced in the microstructure and properties of lamellar yttria-stabilized zirconia coatings upon heating, with the aim of elucidating their starting microstructure prior to sintering. The results showed that the combined effect of the residual stress and the thermal mismatch stress results in scale-sensitive changes in the properties of the coatings. The macroscale properties changed significantly, while the microscale properties changed only slightly. Structural characterization revealed that a certain degree of expansion at the tips of both the intersplat pores and the intrasplat cracks occurs, contributing to the microscale structural changes observed in most regions. Moreover, a few mesoscale cracks covering several layers were also observed. A lamellar structural model was developed to correlate the multiscale structural changes observed with those in the properties. Finally, this study revealed that the actual starting structure of plasma-sprayed thermal barrier coatings prior to sintering is different from that in the as-deposited state. This should aid in obtaining an in-depth understanding on the microstructural and properties evolution of the constrained coatings under actual service conditions. 相似文献
16.
《Journal of the European Ceramic Society》2019,39(7):2397-2408
Forsterite-type Mg2SiO4 was investigated systematically for thermal barrier coating (TBC) applications. Results showed that Mg2SiO4 synthesized by solid-state reaction possessed the good phase stability up to 1573 K. The thermal conductivity of Mg2SiO4 at 1273 K was lower ˜20% than that of yttria stabilized zirconia (8YSZ). Mg2SiO4 also presented moderate thermal expansion coefficients, which increased from 8.6 × 10−6 K−1 to 11.3 × 10−6 K−1 (473˜1623 K). Mechanical properties including hardness, fracture toughness, and Young’s modulus of Mg2SiO4 were comparable to those of 8YSZ. The sintering results indicated a promising low-sintering activity of Mg2SiO4. Mg2SiO4 samples were subjected to water quenching test at 1573 K and showed a superior thermal shock resistance compared to 8YSZ. Mg2SiO4 coating with stoichiometric composition was produced by atmospheric plasma spraying. The thermal cycling test result showed that Mg2SiO4 coating had a lifetime more than 830 cycles at 1273 K, which is desirable for TBC applications. 相似文献
17.
Federico Cernuschi Paolo Bison Daniel E. Mack Marco Merlini Stefano Boldrini Stefano Marchionna Stefano Capelli Stefano Concari Alessia Famengo Alessandro Moscatelli Werner Stamm 《Journal of the European Ceramic Society》2018,38(11):3945-3961
In the perspective of fuelling the future generations of gas turbines by hydrogen rich syngas, the evaluation of the effect of a higher water vapour content into the flue gases on the TBC used, or potentially usable, is a need. For this purpose YPSZ APS TBC with two different microstructures have been exposed for 500?h at different temperatures in the range 1000?°C–1250?°C either in air and air +20% vol. H2O. The comparison between the different testing conditions has been performed in terms of sintering kinetics and phase stability, as evaluated by thermal diffusivity measurements and Synchrotron X-Rays diffraction, respectively. Furthermore the characterisation of thermal properties of two innovative TBCs (GZO-YPSZ and YAG) potentially able to withstand the CMAS attack and erosive environments, respectively, has been carried out.No clear evidence of a different behaviour of TBC has been observed, at least in the considered aging time and temperature range. 相似文献
18.
Yttria partially stabilized zirconia (~4.0?mol% Y2O3–ZrO2, 4YSZ) has been widely employed as thermal barrier coatings (TBCs) to protect the high–temperature components of gas–turbine engines. The phase stability problem existing in the conventional 4YSZ has limited it to application below 1200?°C. Here we report an excellent zirconia system co–doped with 16?mol% CeO2 and 4?mol% Gd2O3 (16Ce–4Gd) presenting nontransformable feature up to 1500?°C, in which no detrimental monoclinic (m) ZrO2 phase formed on partitioning. It also exhibits a high fracture toughness of ~46?J m?2 and shows high sintering resistance. Besides, the thermal conductivity and thermal expansion coefficient of 16Ce–4Gd are more competent for TBCs applications as compared to the 4YSZ. The combination of properties suggests that the 16Ce–4Gd system could be of potential use as a thermal barrier coating at 1500?°C. 相似文献
19.
《Journal of the European Ceramic Society》2017,37(11):3511-3519
Pb(Mg1/3Nb2/3)O3-Pb(Zr0.48Ti0.52)O3 coatings were obtained by supersonic plasma spray. With subsequent heat treatment, compact structure and typical tetragonal phase were obtained, and therefore dielectric performance (εr ≈ 915 at ambient temperature) have been significantly improved. The reason for successfully promote the properties is attributed the elimination of defects, amorphous and pyrochlore phase. Detail analyses were conducted on the variation of defects (pores and micro-cracks) and phase (amorphous, pyrochlore) of coatings after treated at elevated temperature. With the analyses, the existence of pyrochlore phase and ZrO2 are attributed to the incongruent melting behavior. Inhibition of grain growth is attributed to the accumulation of ZrO2 in the grain boundary. The results also suggest the subsequent change from pseudocubic to tetragonal at elevated temperature. 相似文献
20.