首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2022,48(2):1574-1588
In this study, individual Al2O3 and Cr2O3 coatings and Cr2O3-25, 50, 75 wt% Al2O3 composite coatings were applied on carbon steel by atmospheric plasma spraying method. Corrosion experiments were performed on as-sprayed and epoxy resin sealed coatings including potentiodynamic polarization, electrochemical impedance spectroscopy and long-term immersion in 3.5 wt% NaCl solution. Phase composition and microstructure of the coatings were investigated by x-ray diffraction, optical microscopy and scanning electron microscopy, before and after the corrosion experiment. The results showed that the Cr2O3 coating exhibited the best corrosion resistance, due to the densest microstructure and highest adhesion strength. The Cr2O3-25 wt% Al2O3 coating had the highest interconnected porosities and thus had the least corrosion resistance compared to other coatings. In general, the as-sprayed coatings induced a maximum increase of 3.93 times the polarization resistance (Rp) in the polarization experiment and a 3.5 times increase in the charge transfer resistance (Rct) in the EIS experiment, which was not significant. Stresses caused by increased volume of corrosion products in the coating-substrate interface resulted in the spallation of Cr2O3-25, 50 wt% Al2O3 coatings from the substrate over long-term of immersion. The adhesion strength of the coatings was a determining criterion for the long-term durability of the coatings. The sealing treatment resulted in a significant increase in Rp and Rct.  相似文献   

2.
《Ceramics International》2015,41(4):5387-5396
High Velocity Oxygen Fuel (HVOF) is an excellent approach to prepare a good, wear-resistant lamella of Chromium Carbide-Nickel Chrome (Cr3C2–NiCr) on carbon steel for high temperature application. This research investigates the effect of a thin, deposited layer of Cr3C2-NiCr on carbon steel in terms of wear and corrosion properties. The microstructure of the HVOF-sprayed Cr3C2–NiCr coating was characterized at each step by scanning electron microscopy. Wear testing was performed with a pin-on-disk tester. Wear weight loss was examined by applying different loads over a 9048.96 m sliding distance. Experimental results show that the wear resistance of the coated sample reduced the risk of seizure compared to the uncoated sample. An electrochemical test was also performed and the behavior of the substrate in the coated sample was investigated in 3.5% NaCl for 27 days. Electrochemical Impedance Spectroscopy (EIS) showed that the HVOF coating has high corrosion resistance and protects the substrate from NaCl electrolyte penetration. So deposition this layer of ceramic composite is protected oil piping from synergistic attack of seawater during the transport of crude oil to the refinery.  相似文献   

3.
This paper focused on the corrosion resistance of cold spray Al–Al_2O_3composite coatings used on carbon steel pipe surfaces under thermal insulation. Al–Al_2O_3coatings were produced on the carbon steel pipe surface by cold spray(CS) technology. Experimental apparatus was built to test the corrosion resistance of coatings beneath mineral wool insulation under isothermal, thermal cycling and wet/dry conditions. The results showed that when α-Al_2O_3 was added in spraying powder, the coating could obtain higher hardness and a denser microstructure. From corrosionunder-insulation(CUI) tests, Al–Al_2O_3CS coatings were proven to be efficient in protecting carbon steel pipe from CUI mainly owning to lamellar microstructures of coatings. There was no evidence to show that α-Al_2O_3 might bring any negative effect on corrosion resistance. Al–Al_2O_3CS coatings were sensitive to the chloride ion concentration. When these coatings were exposed to higher concentrations of NaC l, the coating's exhibited faster degradation.  相似文献   

4.
《Ceramics International》2020,46(7):8682-8688
Digital Light Processing (DLP) is a promising approach to fabricate delicate ceramic components with high-fidelity structural features. In this work, the alumina and zirconia/alumina ceramic suspensions with low viscosity and high solid loading (40 vol%) were prepared specifically for DLP 3D printing. After debinding and sintering, the final parts were obtained without any defects. The surface morphologies and mechanical properties of alumina (Al2O3) and zirconia toughened alumina (ZTA) composites were investigated and the results showed that the final parts exhibited high relative densities and good interlayer combination at the sintering temperature of 1600 °C. Comparing with the Al2O3, the ZTA composites exhibited significantly enhanced density (99.4%), bending strength (516.7 MPa) and indentation fracture toughness (7.76 MPa m1/2).  相似文献   

5.
Two different multilayered composite polypyrrole/SiO2 coatings were synthesized on 304 stainless steel. Electrochemical and electrophoretic depositions were used to grow polypyrrole and SiO2 layers, respectively. Coatings were characterized by glow discharge optical emission spectroscopy to observe repartition of elements within different layers, by scanning electron microscopy to observe surface morphology and by electrochemistry to investigate corrosion protection behavior. The electrophoretic approach enables good incorporation of SiO2 particles. This incorporation was more extensive and more homogeneous than for coatings obtained with the mixing method related in previous works. Moreover, incorporation and repartition of SiO2 particles are greatly enhanced when the silica layer is grown directly on the steel surface. Corrosion protection of the stainless steel substrate was improved when multilayered composite polypyrrole/SiO2 coatings were used.  相似文献   

6.
7.
《Ceramics International》2023,49(5):7589-7599
To investigate the effects of air annealing on the microstructure, components, and mechanical properties of ceramic composite coatings, Al2O3–Cr2O3–ZrO2 composite coatings were prepared on silicon substrate using radio frequency magnetron sputtering at room temperature, and then air-annealed in a temperature range of 450–850 °C for 30 min. The results indicated that the phase-structure and superficial characteristics, including morphology and surface roughness, were not visibly altered in the annealed coatings up to 600 °C; the elemental component distributions remained uniform. The improvement in the mechanical properties was attributed to the growth of oxide grains. There were no significant changes in the components of Al, Cr, Zr, and O in the annealed coatings. However, an increase in the Cr component and a decrease in the Zr component occurred on the coating surface; the overall structure of the composite coatings possessed a favorable heat resistance. Upon annealing at 750 °C, the thermally-driven formation of uniform and refined nanoparticles on the coating surface was responsible for the effective enhancement of the mechanical properties. Furthermore, annealing at 850 °C induced the enlargement of the precipitated Cr2O3 nanoparticles and the generation of micro-defects, resulting in a drastic morphological evolution, an evident increase in the surface roughness, and a significant decrease in the mechanical properties. This study provides new perspectives on designing novel thermal barrier coatings and understanding the role of high temperature air annealing on the microstructural transformation.  相似文献   

8.
To obtain composite ceramics with excellent thermal shock resistance and satisfactory high?temperature service performance for solar thermal transmission pipelines, SiC additive was incorporated into Al2O3?mullite?ZrO2 composite ceramics through a pressureless sintering process. The effect of the SiC additive on thermal shock resistance was studied. Also, the variations in the microstructure and physical properties during thermal cycles at 1300 °C were discussed. The results showed that both thermal shock resistance and thermal cycling performance could be improved by adding 20 wt% SiC. In particular, the sample with 50 wt% Al2O3, 35 wt% Coal Series Kaolin (CSK), 15 wt% partially yttria?stabilized zirconia (PSZ), and 20 wt% SiC additional (denoted as sample A2) exhibited the best overall performance after firing at 1600 °C. Furthermore, the bending strength of sample A2 increased to 124.58 MPa, with an increasing rate of 13.63% after 30 thermal shock cycles. The increase in thermal conductivity and the formation of mullite were the factors behind the enhancement of thermal shock resistance. During the thermal cycles, the oxidation of SiC particles was favorable as it increased the microstructure densification and also facilitated the generation of mullite, which endowed the composite ceramics with a self?reinforcing performance.  相似文献   

9.
10.
Polycrystalline material of a novel phase in the system CaO–Al2O3–Cr2O3 has been obtained by solid-state reactions. Chemical analysis indicated the composition CaAl2Cr2O7. Single-crystal growth of the new compound using borax as a mineralizer was successful. Diffraction experiments at ambient conditions on a crystal with composition CaAl2.13Cr1.87O7 yielded the following basic crystallographic data: space group P 3, a = 7.7690(5) Å, c = 7.6463(5) Å, V = 399.68(6) Å3, Z = 3. Structure determination and subsequent least-squares refinements resulted in a residual of R(|F|) = 2.3% for 1440 independent observed reflections and 113 parameters. To the best of our knowledge, the structure of CaAl2.13Cr1.87O7 or CaAl2Cr2O7 represents a new structure type. It belongs to the group of double layer structures where individual double layers contain octahedrally and tetrahedrally coordinated cation positions. Linkage between neighboring sheet packages is provided by additional calcium cations. Furthermore, thermal expansion has been studied in the interval between 29 and 790°C using in situ high-temperature single-crystal diffraction. No indications for a structural phase transition were observed. From the evolution of the lattice parameters the thermal expansion tensor has been obtained. A pronounced anisotropy is evident. The response of structural building units to variable temperature has been discussed.  相似文献   

11.
《Ceramics International》2016,42(12):13659-13663
Magnesium and its alloys are the engineering materials which have the potential ability to be able to used widely particularly in the automotive, aerospace and in the biomedical sectors, especially thanks to their features such as lightness, specific strength that they have and biocompatibility. However, due to their poor wear resistance and corrosion resistance, the areas of usage are being restricted. This situation prevents Mg alloys to be used without any surface protection despite their good mechanical properties such as high strength/weight ratio. In this study, plasma spraying method is used to improve the poor corrosion resistance of AZ31 Mg alloy. Al2O3–13 wt% TiO2 (AT13) and Al2O3–40 wt% TiO2 (AT40) composite ceramic coatings were coated successfully on the surfaces of AZ31 Mg samples. The wear properties of the AT13 and AT40 coated samples were investigated for tribological applications. Surface morphology and microstructure of the duplex treated samples were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The microhardness value of the uncoated AZ31 Mg alloy is 40±3 HV0.1, while the microhardness values of the AT40 and AT13 coatings are enhanced to 800±39 HV0.1 and 1500±35 HV0.1, respectively.  相似文献   

12.
《Ceramics International》2022,48(18):26028-26041
Multilayered C–Si–Al coatings with various morphologies were deposited on carbon fibers (CFs) using magnetron sputtering. The thickness of the coatings was increased from 0.5 to 1.5 μm by magnetron sputtering between 90 and 120 min. C–Si–Al coatings of suitable thickness were heat-treated at 600 °C and transformed into C–Si–Al2O3 coatings by one-step anodic oxidation (AO). The oxidation time for the one/two-step anodic oxidation and the ratio of oxidation time for the two-step anodic oxidation significantly influenced the morphologies of the C–Si–Al2O3(AO) coatings. Al2O3 coatings with satisfactory morphologies and structures were prepared by two-step anodic oxidation with a total time of 30 min and a ratio of 1:1 between the initial and secondary oxidation times. The multilayered C–Si–Al2O3(AO) coatings were modified to C–Si–Al2O3 coatings by secondary heat treatment at 1050 °C. Subsequently, hot-press sintering was used to prepare CFs with multilayered C–Si–Al2O3 coating-reinforced hydroxyapatite (CF/C–Si–Al2O3/HA) composites. The multilayered C–Si–Al2O3-coated CFs demonstrated good resistance to oxidation and thermal shock. This could effectively protect CFs from oxidative damage and maintain its strengthening effect during sintering. The multilayered C, Si, and Al2O3 coatings effectively reduced the difference between the coefficient of thermal expansion of the CFs and HA matrixes. The interfacial gaps between the multilayered coatings and HA were reduced. This could enhance the mechanical performance of the composites. The CF/C–Si–Al2O3/HA composites exhibited improved mechanical properties with a bending strength of 83.94 ± 12.29 MPa, and fracture toughness of 2.45 ± 0.08 MPa m1/2. This study can broaden the application of CF/C–Si–Al2O3/HA biocomposites as bone-repair materials and help obtain CF-reinforced composites with excellent mechanical properties that are fabricated or serviced at high temperatures.  相似文献   

13.
The present investigation focuses on the effect of Cr2AlC MAX phase addition on erosion and oxidation-induced crack healing behavior of Ni–Mo–Al alloy. For this, Ni–Mo–Al and 20 wt% Cr2AlC-blended Ni–Mo–Al powders were coated by Air Plasma Spray (APS). For oxidation-induced crack healing studies, the samples were heat treated at 500, 800, and 1100°C in the air for 5 hours. The heat-treated samples were analyzed by X-Ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS) for the phases, morphology, and composition. Erosion behavior studies were carried out at 30, 250, 500, 800, and 1000°C temperatures. The average hardness was obtained to be 400 ± 10 HV for Ni–Mo–Al coating and 580 ± 10 HV for 20 wt% Cr2AlC-blended Ni–Mo–Al coating. The addition of Cr2AlC MAX into Ni–Mo–Al matrix reduces the overall erosion rate and improved the crack healing ability. This was attributed to the presence of in-situ-formed Cr7C3 and Al2O3 phases.  相似文献   

14.
《Ceramics International》2023,49(20):33226-33235
The effects of layer number (2, 4, and 6-layer) and sintering temperature (800, 900, 1000, and 1100 °C) on the microstructure, wear, and corrosion properties of Al2O3–TiO2 multilayer coatings deposited on 316L stainless steel plates using the sol-gel dip coating technique were investigated. The wear characteristics were measured through ball-on-disc type dry sliding tests using an Al2O3 ball under a 1 N load, whereas the corrosion features were determined by potentiodynamic polarization tests conducted in a 3.5 wt% NaCl solution. Anatase, rutile, α-Al2O3, and γ-Al2O3 phases were obtained in the hybrid coatings, depending on the sintering temperatures. However, at 1100 °C, the coating did not adhere well to the substrate due to passive oxide film formation on the 316L plate, leading to spalling. Besides, the surface homogeneity deteriorated in the 6-layer coated sample due to higher organic removal and residual stresses. The corrosion rate decreased with the increasing number of layers, but the sensitivity to corrosion varied due to changes in surface properties. The 4-layer coated sample sintered at 1000 °C achieved the highest wear strength (improved by up to 71.1%) and corrosion resistance (increased by up to 90.4%) due to its decreased porosity and homogeneously distributed finer particles.  相似文献   

15.
《Ceramics International》2021,47(20):28444-28448
Long-sized rods of Al2O3–SiC–TiB2 ceramic composite material were obtained by SHS-extrusion. The material was synthesized by self-propagating high-temperature synthesis (SHS) followed by high-temperature shear deformation. Ceramic samples app up to 465 mm in length and 5 mm in diameter were obtained. According to the results of XRD and SEM the obtained rods have a composite structure. The matrix is Al2O3 with distributed titanium diboride and silicon carbide particles. A uniform phase distribution was observed along the entire length of the rod. The microhardness of the matrix was 25–26 GPa, that of the dispersion-strengthening phases - 32–34 GPa. Heat resistance tests showed that during heat treatment at T = 1000 °C for 21 h, the sample specific weight gain and its real rate were 8.3 g/m2 and 1 g/(m2∙h), respectively. The density, hardness and electrical resistivity of the samples obtained in this work were 3.27 g/cm3, 19.5 GPa, 3.1∙10−5 Ohm∙m, respectively.  相似文献   

16.
A new composition was developed using sintering to improve the dielectric properties of low-temperature co-fired alumina (LTCA) containing CuO–TiO2–Nb2O5–Ag2O. By substituting some alumina with rutile TiO2, the second-phase compound could be changed from AgNbO3 to the rutile phase. Further, low-temperature sintering at temperatures below 960 °C was possible, suppressing Al2TiO5 formation during firing. The dielectric characteristics, particularly the temperature coefficient of the resonant frequency (τf) and Q × f values, were improved without significantly reducing the sinterability and thermal conductivity. The dielectric properties of the developed 88Al2O3–12TiO2-based ceramic were εr: 14.7, τf: +0.8 ppm/K, and Q × f: 13,383 GHz (at ~10 GHz) at a firing temperature of 940 °C. The thermal conductivity was 18.5 W/mK, which is the highest value for reported temperature-stable low-temperature co-fired ceramics (LTCCs). These results provide one of the key technologies for the practical application of LTCCs with superior thermal conductivities.  相似文献   

17.
In this study, the effects of bond coat on the properties of Al2O3 and Al2O3–13 wt.% TiO2 coatings, which is plasma sprayed onto a commercial pure titanium substrate with and without Ni–5 wt.% Al (METCO 450 NS) as bond coating layer were investigated in terms of microhardness, bonding strength and surface roughness. Optical and scanning electron microscopy (SEM) examinations revealed that there is a uniform coating layer with no spalling and delamination. However, there is a little amount of porosity. The results indicated that the application of bond coat layer in the plasma spraying of Al2O3 and Al2O3–13 wt.% TiO2 on pure titanium substrate has increased the hardness and bonding strength of coatings. While the adhesive bonding is dominant without bond coat, the cohesive bonding is dominant with the application of the bond coating layer. It has been observed that percentage of cohesion strength was about three times higher than that of adhesion strength.  相似文献   

18.
《Ceramics International》2020,46(9):13527-13538
Ni–based composite coatings with different amounts of TiO2–ZnO were fabricated by atmospheric plasma spraying (APS) to protect GH4169 superalloy substrates against excess wear and friction at elevated temperatures. In addition, the influence of the simultaneous addition of the oxides on the microstructure, microhardness, and wear behaviour was investigated. According to the results, the simultaneous addition of TiO2/ZnO provides anti-friction and wear inhibition over 600 °C. In particular at 800 °C, the TiO2–ZnO/Ni–5wt.%Al composite coating (10 wt% TiO2 and 10 wt% ZnO were incorporated within Ni–5wt.%Al matrix) exhibits a superior lubricity and wear resistance compared to the Ni–5wt.%Al based coatings. The XRD, Raman, and TEM characterisations reveal the formation of a glaze oxide layer consisting of NiO, TiO2, ZnO and the in-situ production of ternary oxide (Zn2TiO4), which was primarily responsible for the tribological performance of the sliding wear contacts at the specific temperature.  相似文献   

19.
《Powder Technology》2001,114(1-3):106-111
The surface characteristics of ternary ceramic powders in the system TiO2–SiO2–Al2O3 prepared by a sol–gel technique were studied through nitrogen gas adsorption at liquid nitrogen temperature and application of the Brunauer–Emmett–Teller (BET) equation. The total surface area, total pore volume and pore radius of the powders were calculated through the construction of plots relating the amount of nitrogen gas adsorbed V1 and the thickness of the adsorbed layer t (V1t plots). These results permitted the detection of the different types of pores present in the samples. In a first approximation, the V1t plots seem to demonstrate the correctness of the results obtained for the total specific area of the investigated samples. The influence of thermal treatment (drying, calcination) on the surface characteristics of the investigated powders was assessed.  相似文献   

20.
The thermal-shock-resistant materials in the system Al2TiO5–ZrTiO4 (ZAT) were synthesized by oxide process. The range of ZAT compositions investigated had showed very low thermal expansions of 0.3∼1.3×10−6/K compared to 8.29×10−6/K of pure ZrTiO4 and 0.68×10−6/K of polycrystalline Al2TiO5, respectively, compared with the theoretical thermal expansion coefficient for a single crystal of Al2TiO5, 9.70×10−6/K. The composites also had high thermal durability between 750 and 1400° for 100 h. The low thermal expansion and high thermal durability are apparently due to a combination of microcracking caused by the large thermal expansion anisotropy of the crystal axes of the Al2TiO5 phase and the limitation of grain growth Al2TiO5 by the ZrTiO4. The microstructural degradation of the composites is presented here analyzed by scanning electron microscopy, X-ray diffraction, and dilatometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号