首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mercury porosimetry was used to measure the bulk and real densities, pore volumes and pore size distributions of compacts of hydroxyapatite before and after sintering. The hydroxyapatites were prepared by two different methods and had widely different surface areas. The properties were determined as a function of compaction force and sintering temperature. Densities from porosimetry were in good agreement with geometric densities. A linear relation was found between pore volume and log of the applied force. There was also a linear relationship between bulk volume and pore volume of the compacts. A bimodal pore size distribution was observed for the high surface area hydroxyapatite which disappeared with increasing compaction loads. Pressurization and depressurization measurements indicated that the main body of the pores in the compacts attained a more regular “spherical” shape with increasing compaction force than did the “necks”. The pore volume, percent porosity, and bulk density of the compacts remained unchanged up to 600°C; however, the surface area and the average pore diameter changed at 400°C. The distribution of pores became more uniform, narrower in distribution, and larger in size as the sintering temperature increased. The change in pore area with pore volume indicated that two mechanisms were operating during sintering. The pore area proved to be the most sensitive indicator of changes during sintering.  相似文献   

2.
《应用陶瓷进展》2013,112(3):159-169
Abstract

Observation of the unconventional properties and material behaviour expected in the nanometre grain size range necessitates the fabrication of fully dense bulk nanostructured ceramics. This is achieved by the application of ceramic nanoparticles and suitable densification conditions, both for the green and sintered compacts. Various sintering and densification strategies were adopted, including pressureless sintering, hot pressing, hot isostatic pressing, microwave sintering, sinter forging, and spark plasma sintering. The theoretical aspects and characteristics of these processing techniques, in conjunction with densification mechanisms in the nanocrystalline oxides, were discussed. Spherical nanoparticles with narrow size distribution are crucial to obtain homogeneous density and low pore-to-particle-size ratio in the green compacts, and to preserve the nanograin size at full densification. High applied pressure is beneficial via the densification mechanisms of nanoparticle rearrangement and sliding, plastic deformation, and pore shrinkage. Low temperature mass transport by surface diffusion during the spark plasma sintering of nanoparticles can lead to rapid densification kinetics with negligible grain growth.  相似文献   

3.
Alumina powder was consolidated by slipcasting of suspensions with pH between 2 and 9, and then fired under various time-temperature conditions. The effects of agglomerates on the pore structure in green compacts and on the microstructure development during sintering were studied. An increase in the pH value of the suspension from 2 to 9 increased the agglomerate size in the suspension, resulting in an increase in both pore size and pore volume in green compacts. The sintering behavior was studied for the compacts made from the suspensions of pH = 2 and 9. The pH = 2 compact densified faster than the pH = 9 compact, without any significant difference in the microstructure development, which was characterized by the formation of well-sintered regions during the early stage of sintering (density < 75%), followed by the development of a uniform grain structure (75% < density < 95%) and columnar grains during grain growth achieve a specific microstructure more so for the pH = 9 compact than for pH = 2 because of larger pore size in the green state.  相似文献   

4.
《Ceramics International》2017,43(11):7970-7977
Boron carbide compacts were produced by pressureless sintering at 2200 °C/2 h and 2250 °C/2 h in Ar atmosphere, using a starting powder with a particle size smaller than 3 µm. Effects of carbon addition (3.5 wt%) and methanol washing of the starting powder were investigated on the densification, Vickers hardness, and micro-abrasive wear resistance of the samples. The removal of oxide phases by methanol washing allowed the production, with no sintering additive, of highly densified (93.6% of theoretical density), hard (25.4 GPa), and highly wear resistant (wear coefficient =2.9×10–14 m3/N.m) boron carbide compacts sintered at 2250 °C. This optimized combination of properties was a consequence of a reduced grain growth without the deleterious effects associated to the carbon addition. Methanol washing of the starting powder is a simple and general approach to produce, without additives, high quality, wear resistant boron carbide compacts by pressureless sintering.  相似文献   

5.
A new colloidal route leading to the production of ∼99% dense 3-mol% yttria-stabilized zirconia nanostructured ceramics, while retaining a final average grain size of ∼75 nm, has been developed. The process was based on the production of stable, homogeneous nanosuspensions with solids contents of up to 28 vol% (70 wt%), but viscosities <0.05 Pa·s at any shear rate in the range of study were obtained. The suspensions were formed by the concentration and optimization of precursor, dilute (5.0 vol%) commercial nanosuspensions, the approach requiring a change of pH, from the 2.4 of the as-received suspension to 11.5, and the use of an appropriate anionic dispersant. Exposure of the nanosuspensions to ultrasound also helped to reduce the viscosity further, although it only worked when the dispersant was optimized. The nanosuspension was slip cast to form homogenous green bodies with densities of ∼55% of the theoretical without agglomeration in the nanostructure; these were subsequently densified using a two-step sintering technique.  相似文献   

6.
The progresses of the relative density, average grain size (GS), and maximum pore size entering into the final sintering stage are investigated in 3 mol% yttria‐stabilized tetragonal zirconia polycrystals (3Y‐TZP) compacts in the range of 87%~99% theoretical density. It is found that during conventional pressureless sintering, the pores in the compact enlarged dramatically, which appears to be the major obstacle for preparing fully dense nanoceramics. Transparent 3Y‐TZP nanoceramics with an average GS of 87 nm were prepared by exploiting microstructural refinement on nanoscale. The yields a maximal optical transmittance of 67% and shows no noticeable low‐temperature degradation after 100 h aging at 134°C under a hydrothermal pressure of two bars.  相似文献   

7.
Mercury porosimetry was used to measure changes in pore size distribution during initial stage sintering of compacts of submicron size particles of several oxides. Pore growth was observed in MgO and Fe2O3, and in Al2O3 under certain conditions. Pores can grow by these mechanisms: surface diffusion, particle size distribution effects, particle coalescence, phase transformation, and evaporation/condensation. Surface diffusion may be the mechanism in the case of an alpha alumina. Phase transformation was shown to be the cause when sintering gamma alumina. In the case of magnesia and ferric oxide, particle coalescence appears to be operating. Since pore growth competes with densification for the use of surface energy, it is an important sintering process.  相似文献   

8.
Pore structures of sintered and metallized iron oxide compacts were investigated by mercury porosimetry. The pore volume of the sintered compacts was found to decrease with increasing sintering temperature and time, owing to the progressive elimination of the smallest pores present in the compacts. Reduction in hydrogen generated a bimodal pore size distribution, the larger pores reflecting the original intergranular compact structure and the second band of smaller pores, the intragranular voids produced by the removal of oxygen. The average pore size of the reduction band was entirely independent of the oxide grain size and sintering temperature, but depended strongly on reduction temperature. Apparent activation energies of 13 and 27 kcal/mole were derived for the pore formation process over the temperature ranges 500° - 800 °C and 800° - 900 °C respectively. Swelling phenomena observed on reduction were attributed mainly to an increase in the intergranular voidage.  相似文献   

9.
Two-step sintering (TSS) concept was adopted in the consolidation of 3 mol% yttria doped zirconia nanopowder. Partially densified bodies with 87% theoretical density (TD) were firstly prepared using high-pressure spark plasma sintering (SPS) technique and followed by second-step pressureless sintering. The samples achieved only 96% TD final density after 30 h soaking. It was found that the densification process was impeded by dynamic pore coalescence with a pore growth factor of 10. The phenomenon was explained by the coalescence of interconnected small pores generated by differential sintering of nanoceramic green compacts. Such pore coalescence was accompanied with particle movement, which resulted in sintering state deviating from the frozen state. Present results indicated that the active range for particle rearrangement was greatly extended during nanoceramic sintering and the efficiency of TSS approach was greatly dependent on the homogeneity of green bodies.  相似文献   

10.
In this study the densification behavior of bimodal Y-TZP powder compacts consisting of nano/sub-micron-sized particles was studied and an explanation for their improved flexural strength while biscuit-sintered is provided. An in situ-heating TEM analysis revealed that up to 800 °C only the nanoparticles sinter in a bimodal mixture without any densification. By increasing the temperature to 900 °C the densification of the nanoparticles begins and partially densified nanoparticle clusters migrate into the contact area between the core particles. Consequently, the driving force for the sintering of the powder-blend compacts is reduced and this is reflected in a slower densification compared to that of the core material. At 1000 °C the sintered nanoparticle clusters begin to incorporate into the core material, resulting in a sharp increase in the strength due to the increased neck area. Biscuit-sintered powder-blend compacts reached a plateau of strength at 670 MPa, which was reached at a relative density of 70%.  相似文献   

11.
A spark plasma sintering (SPS) method was utilized for the novel production of diamond-like carbon (DLC) compacts. Two amorphous carbon powders with different particle sizes (45 μm and 24 nm diameter) were employed as starting materials for the sintering experiments. The carbon powders were sintered using a SPS system at various sintering temperatures and holding times. The structural properties of the sintered compacts were evaluated using X-ray diffraction (XRD) analysis and high-resolution transmission electron microscopy (HRTEM). Disk-shaped compacts were obtained by sintering the powder with a particle diameter of 45 μm, although the compacts were very brittle and easily broken. However, sintering of the 24 nm diameter powder particles at temperatures of 1473 to 1573 K with a holding time of 300 s led to the successful production of sintered compacts without breakage. Reflection peaks related to graphite structure were observed in XRD patterns of the compacts sintered from the 24 nm diameter particles. HRTEM analysis revealed that the compacts sintered at 1473 K with a holding time of 300 s had an amorphous structure and consisted of 34% sp3 carbon bonding. Evaluation of the structural properties indicated that sintered compacts with DLC structure could be created by the SPS method with 24 nm diameter amorphous carbon particles.  相似文献   

12.
For a few oxide ceramics, the use of an initial precoarsening step prior to densification (referred to as two-step sintering) has been observed to produce an improvement in the microstructural homogeneity during subsequent sintering. In the present work, the effect of a precoarsening step (50 h at 800°C) on the subsequent densification and microstructural evolution of high-quality alumina (Al2O3) powder compacts during constant-heating-rate sintering (4°C/min to 1450°C) was characterized in detail. The data were compared with those for similar compacts that were sintered conventionally (without the heat treatment step) and used to explore the mechanism of microstructural improvement during two-step sintering. After the precoarsening step, the average pore size was larger, but the distribution in pore sizes was narrower, than those for similar compacts that were sintered conventionally to 800°C. In subsequent sintering, the microstructure of the precoarsened compact evolved in a more homogeneous manner and, at the same density, the amount of closed porosity was lower for the compacts that were sintered by the two-step technique, in comparison to the conventional heating schedule. Furthermore, a measurably higher final density, a smaller average grain size, and a narrower distribution in grain sizes were achieved with the two-step technique. The microstructural refinement that was produced by the two-step sintering technique is explained in terms of a reduction in the effects of differential densification and the resulting delay of the pore channel pinch-off to higher density.  相似文献   

13.
Alumina and zirconia nanosuspensions with a mean particle size of 100 nm and 15 nm, respectively, were consolidated by centrifugal compaction in non-porous moulds. The nanosuspensions consolidated by high-speed centrifugation were deposited irregularly, resulting in a powder deposit with density profile. The homogeneity of the powder deposits was described and homogeneous and well packed deposit regions were identified. Plate-like bodies were prepared from the homogeneous regions of the deposit. The advantage of regular and dense nanoparticle packing by centrifugal compaction was demonstrated by fabricating transparent alumina and tetragonal zirconia ceramics. The transparent alumina had an in-line transmission of 55% in the visible light at a thickness of 0.8 mm. The transparent tetragonal zirconia reached a dense microstructure with an average grain size of 65 nm and an in-line transmission of 25% at a thickness of 0.5 mm.  相似文献   

14.
Green compacts pressed by means of uniaxial compaction with Magnesia (MgO) powders precipitated from sea water and calcined at different temperatures were sintered under H2 atmosphere at 1700 °C. The calcination, carried out between 900 and 1200 °C had a great influence in the final density and the microstructure. The densification of MgO agglomerated powders seems to be predictably related to grain growth and thus coarsening kinetics. At calcination temperatures higher than 900 °C, the volume of large pores was increased notably suggesting that the inhibited grain growth adversely affected the thermodynamics of pore sintering. Relative densities between 74 and 98% of theoretical density were reached in compacts obtained at different compaction pressures. The microstructural differences were examined by Scanning Electron Microscopy (SEM).  相似文献   

15.
This study was carried out to gain understanding about the sintering behaviour of highly crystallisable industrial waste derived silicate mixtures under direct heating and rapid cooling conditions. The materials used in this study were plasma vitrified air pollution control waste and rejected pharmaceutical borosilicate glass. Powder compacts sintered under direct heating conditions were highly porous; compacts with particle size <?38?μm reached a maximum density of 2.74 g?cm??3 at 850°C, whereas compacts with particles of size <?100?and <?250?μm reached maximum densities of 2.69 and 2.72 g?cm??3 at 875 and 900°C respectively. Further increase in sintering temperature resulted in a rapid decrease in density of the glass ceramics. Image analysis results were used to link the sudden drop in density to the increase in volume of microsized pores formed in the samples during sintering. In particular, compacts made from <?38 μm particles sintered at 950°C resulted in 65 vol.-% porosity with a pore size of ~20?μm. Such materials can be used for sound and thermal insulation purposes.  相似文献   

16.
《Ceramics International》2017,43(2):1895-1903
This paper examined theoretically and experimentally packing behavior, sintering behavior and compressive mechanical properties of sintered bodies of the bimodal particle size system of 80 vol% large particles (351 nm diameter)–20 vol% small particles (156 nm diameter). The increased packing density as compared with the mono size system was explained by the packing of small particles in 6-coordinated pore spaces among large particles owing to the similar size relation between 6-coordinated spherical pore and small particle. The sintering between adjacent large particles dominated the whole shrinkage of the powder compact of the bimodal particle size system. However, the bimodal particle size system has a high grain growth rate because of the different curvatures of adjacent small and large particles. The derived theoretical equations for the compressive strengths of both mono size system and bimodal particle size system suggest that the increase in the grain boundary area and relative density by sintering dominate the compressive strength of a sintered porous alumina. The experimental compressive strengths were well explained by the proposed theoretical models. The strength of the bimodal particle size system was high at low sintering temperatures but was low at high sintering temperatures as compared with that of mono size system of large particles. This was explained by mainly the change of grain boundary area with grain growth. The stress–strain relationship of the bimodal particle size system showed an unique pseudo-ductile property. This was well explained by the curved inside stress distribution along the sample height. The inside stress decreases toward the bottom layer. The fracture of one layer of sintered grains over the top surface proceeds continuously with compressive time along the sample height when an applied stress reaches the critical fracture strength.  相似文献   

17.
The dispersion and rheology of aqueous ZrB2 nanosuspensions were investigated by zeta potential measurements, particle size measurements, sedimentation tests, and rheology measurements, with poly (acrylic acid) (PAA) as dispersant. Results showed that the dispersion and rheology of nanosized ZrB2 suspensions in aqueous media were dependent on pH value, PAA concentration, solid loading, and ball milling time. Concentrated (up to 30 vol% solid loading) and well‐stabilized aqueous ZrB2 nanosuspension with low viscosity (0.485 Pa s at 60/s) was prepared at pH 10, with 1.0 wt% PAA.  相似文献   

18.
Homogeneous rapid sintering of nanoparticle powder compacts of yttria-stabilized zirconia was achieved by the radiation heat transfer. Green bodies were prepared by cold isostatic pressing (CIP) at various pressures providing different porosity of samples before sintering. Pressure-less sintering was performed in air at a heating rate of 100 °C/min up to the 1500 °C/1 min. Scanning electron microscopy, mercury intrusion porosimetry, and Archimedes technique were used to characterize the microstructure and to determine the density of the green and sintered bodies. Contrary to expectations, our results reveal opposite dependence of the green- and sintered densities on the CIP pressure. Since the whole sintering process does not exceed 10 min, to propose what processes are responsible for observed results, our attention is focused on the radiation heat transfer from furnace heating elements into the ceramics. Our arguments are supported by numerical calculations of the electromagnetic field enhancement in/between particles.  相似文献   

19.
Oxide-bonded porous SiC ceramic filter supports were prepared using SiC powder (d50 = 212 µm), Al2O3, and clay as bond forming additives and graphite as pore former following reaction bonding of powder compacts at 1400°C in air. Reaction bonding characteristics, phase composition, porosity, pore size, mechanical strength, and microstructure of porous SiC ceramic supports were investigated. Mullite bond phase formation kinetics was studied following the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model using non-isothermal differential thermal analysis (DTA) data. Compared to porous SiC ceramic filter supports having no needle-like mullite bond phase, materials processed by the mullite bonding technique exhibited higher average strength (22.1%) and elastic modulus (5.4%) at a similar porosity level of ~38%, with upper and lower bounds of their strength, modulus, and porosity being 39.1 MPa, 40.2 GPa, and 36.3% and 34.2 MPa, 31.3 GPa, and 33.0%, respectively. Spray coating method was applied for preparation of oxidation-bonded SiC filtration layer having thickness of ~150 µm and pore size of ~5–20 µm over the porous SiC support compacts using aqueous slurry made of fine SiC powder (d50 = 15 µm) followed by sintering. The layered ceramics thus prepared are potential materials for gas filter applications.  相似文献   

20.
Recently, great effort has been devoted to obtain porous materials with customized pore size distribution, high surface area and submicrometer sized microstructures or nanostructures. In this work, the viability of colloidal processing routes to obtain porous bulk ceramics using alumina nanopowders and d-fructose as a dispersant and a porosity former has been explored.The rheological behaviour of nanosuspensions was studied in order to assure their stability and to analyse the influence of different parameters (solids loading, fructose content, pH, sonication time). Mesoporous green bodies were obtained by slip casting with d-fructose in concentrations ranging from 5 to 50 wt%. The drying and burning-out conditions were determined by DTA-TG measurements and the sintering cycles were selected from the dynamic sintering curve. Sintered alumina materials with high porosity (>60%), open microstructures, submicrometer sized porosity (dp = 140–210 nm) and grain size lower than 500 nm, were obtained for pieces sintered at temperatures of 1300 and 1400 °C. The influence of different processing parameters on the porosity and the microstructure of the sintered materials is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号