首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increasing the haze of front electrodes of solar cells while retaining high optical transmittance is beneficial for increasing the power conversion efficiency. However, conventional methods of fabricating hazy films require additional etching steps or materials. Moreover, depositing large-area transparent conductive oxides with uniform ultrahigh haze is challenging. Here, we combine the oblique angle deposition and the atmospheric pressure plasma jet to produce GZO with a uniform ultrahigh haze of > 80% (non-uniformity ~1.35%), high transmittance of 88% (referenced to the substrate), and resistivity of 1.96 × 10–3 Ω cm in a single step. We show that the high haze is caused by the “pre-deposition” of adsorbed particles on the bare substrate downstream and that the upstream dummy area should be avoided for high uniformity. Unlike existing methods, our method produces uniform films with ultrahigh haze and good transmittance in a single step without additional etching/ materials or changing parameters during operation.  相似文献   

2.
Zinc tin oxide (ZTO) thin films can be deposited by atomic layer deposition (ALD) with adjustable electrical, optical and structural properties. However, the ternary ALD processes usually suffer from low growth rate and difficulty in controlling film thickness and elemental composition, due to the interaction of ZnO and SnO2 processes. In this work, ZTO thin films with different Sn levels are prepared by ALD super cycles using diethylzinc, tetrakis(dimethylamido)tin, and water. It is observed that both the film growth rate and atom composition show nonlinear variation versus [Sn]/([Sn]+[Zn]) cycle ratio. The experimental thickness measured by spectroscopic ellipsometry and X-ray reflectivity are much lower than the expected thickness linearly interpolated from pure ZnO and SnOx films. The [Sn]/([Sn]+[Zn]) atom ratios estimated by X-ray photoelectron spectroscopy have higher values than that expected from the cycle ratios. Hence, to characterize the film growth behavior versus cycle ratio, a numerical method is proposed by simulating the effect of reduced density and reactivity of surface hydroxyls and surface etching reactions. The structure, electrical and optical properties of ZTO with different Sn levels are also examined by X-ray diffraction, atomic force microscope, Hall measurements and ultraviolet–visible–infrared transmittance spectroscopy. The ZTO turns out to be transparent nanocrystalline or amorphous films with smooth surface. With more Sn contents, the film resistivity gets higher (>1 Ω cm) and the optical bandgap rises from 3.47 to 3.83 eV.  相似文献   

3.
Aluminum-doped zinc oxide (AZO) thin films have been deposited on glass substrates by employing radio frequency (RF) sputtering method for transparent conducting oxide applications. For the RF sputtering process, a ZnO:Al2O3 (2 wt.%) target was employed. In this paper, the effects of near infrared ray (NIR) annealing technique on the structural, optical, and electrical properties of the AZO thin films have been researched. Experimental results showed that NIR annealing affected the microstructure, electrical resistance, and optical transmittance of the AZO thin films. X-ray diffraction analysis revealed that all films have a hexagonal wurtzite crystal structure with the preferentially c-axis oriented normal to the substrate surface. Optical transmittance spectra of the AZO thin films exhibited transmittance higher than about 80% within the visible wavelength region, and the optical direct bandgap (Eg) of the AZO films was increased with increasing the NIR energy efficiency.  相似文献   

4.
ABSTRACT: Transparent conducting ZnO/Ag/ZnO multilayer electrodes having electrical resistance much lower than that of widely used transparent electrodes were prepared by ion-beam-assisted deposition (IAD) under oxygen atmosphere. The optical parameters were optimized by admittance loci analysis to show that the transparent conducting oxide (TCO) film can achieve an average transmittance of 93%. The optimum thickness for high optical transmittance and good electrical conductivity was found to be 11 nm for Ag thin films and 40 nm for ZnO films, based on the admittance diagram. By designing the optical thickness of each ZnO layer and controlling process parameters such as IAD power when fabricating dielectric-metal-dielectric films at room temperature, we can obtain an average transmittance of 90% in the visible region and a bulk resistivity of 5 x 10^-5 ohm-cm. These values suggest that the transparent ZnO/Ag/ZnO electrodes are suitable for use in dye-sensitized solar cells.  相似文献   

5.
ZnO thin ?lms were successfully deposited onto PET substrates prepared by using cathodic arc plasma deposition (CAPD) technique at a low temperature (<75 °C). Their structure, optical and electrical properties were investigated with various arc currents (40, 45, 50 and 55 A). ZnO (0 0 2) peak was clearly observed, and increased as the arc current increased from 40 A to 55 A. The calculated average crystallized sizes were around 15.9-17.7 nm. The films have an average transmittance over 85% in the visible region, and calculated values of the band gap around 3.33-3.31 eV with increase of the arc current. It was also found that a slight blue shift of optical transmission spectra was observable when decreasing the arc current. The deposited ZnO films had the lowest resistivity; about 3 × 10−3 Ω cm for the ZnO ?lm with the arc current of 40 A.  相似文献   

6.
7.
The influence of the ZnO buffer layer thickness on the electrical and optical properties of In2O3–10 wt.% ZnO and ZnO bilayers deposited on polyethylene terephthalate (PET) substrates by RF magnetron sputtering were investigated. The optimum ZnO buffer layer thickness was found to be 90 nm which gives the lowest electrical resistivity of the bilayer of IZO and ZnO deposited on the PET substrate. The surface roughness decreases and diffusion of moisture and gas is more efficiently restrained, which contributes to lower the resistivity of the bilayer as the ZnO buffer layer thickness is increased. On the other hand, the total resistivity of the bilayer increases as the ZnO buffer layer thickness is increased because the resistivity of ZnO is higher than that of IZO. Introduction of a ZnO buffer layer does not nearly affect the IZO/ZnO/PET sample.  相似文献   

8.
Thin films of ZnTe were deposited at angles of 0°, 20°, 40°, 60° and 80° by thermal evaporation. The chemical, structural, morphological, optical, and photocurrent properties of ZnTe thin films were investigated. The elemental composition of the films was investigated by energy dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS). EDX and XPS analyses showed that at lower angles (0° and 20°), the deposited films were Te-rich, at 40°, the deposited film was nearly stoichiometric; and at higher angles (60° and 80°), the deposited films were Zn-rich. X-ray diffraction (XRD) analysis showed that all films were polycrystalline. X-ray diffraction patterns showed that lower-angles-deposited films had an extra peak at 2θ =?36.47° that belongs to Te element. Atomic force microscopy analysis revealed that the surface roughness of films was increased by increasing the deposition angle from 0° to 80° because shadowing effect raised due to an oblique angle. It was observed that higher-angles-deposited films (ZnTe-60°, and ZnTe-80°) showed less transmittance and high reflectance compared to lower-angles-deposited films because of high metallic Zn content in these films. Current-voltage (I-V) measurements showed that nearly stoichiometric (ZnTe-40°) film showed better photocurrent response compared to non-stoichiometric films (ZnTe-0°, ZnTe-20°, ZnTe-60°, and ZnTe-80°).  相似文献   

9.
ZnO/TiO2 nanolaminates were grown on Si (100) and quartz substrates by atomic layer deposition at 200°C using diethylzinc, titanium isopropoxide, and deionized water as precursors. All prepared multilayers are nominally 50 nm thick with a varying number of alternating TiO2 and ZnO layers. Sample thickness and ellipsometric spectra were measured using a spectroscopic ellipsometer, and the parameters determined by computer simulation matched with the experimental results well. The effect of nanolaminate structure on the optical transmittance is investigated using an ultraviolet–visible-near-infrared spectrometer. The data from X-ray diffraction spectra suggest that layer growth appears to be substrate sensitive and film thickness also has an influence on the crystallization of films. High-resolution transmission electron microscopy images show clear lattice spacing of ZnO in nanolaminates, indicating that ZnO layers are polycrystalline with preferred (002) orientation while TiO2 layers are amorphous.  相似文献   

10.
《Ceramics International》2022,48(3):3303-3310
We present photoabsorption (PA) response and resistive switching (RS) behavior of ZnO thin films that were ion implanted, at many fluences, with 50 keV Ti ions. Photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), UV–Visible spectroscopy and conductive- Atomic Force Microscopy (c-AFM) have been utilized to study the role of oxygen vacancies (OV ) in the evolution of the PA and RS properties. Grazing incidence X-ray diffraction (GIXRD) and Raman Scattering results suggest an improvement in the crystallinity of the films with ion fluence. Enhancement in oxygen vacancy, with fluence, appears to be responsible for higher photo response in the UV–Vis range. Additionally, engineering of bandgap, exhibiting systematic reduction in bandgap- energy with fluence, introduces enhanced absorption in visible regime. For the films implanted at the highest fluence, an asymmetric RS behavior is observed. A Switching behavior, from a high resistance state to a low resistance state, is demonstrated under positive bias conditions. However, for negative bias conditions a rectifying nature is seen. Oxygen vacancies play a crucial role in the modulation of PA response as well as in RS mechanism. Migration of these oxygen vacancies contribute to the formation of conducting filament which may be crucial for the observation of RS phenomenon at the highest fluence.  相似文献   

11.
12.
Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a dual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300–515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8–28 nm. Film resistivity varied from 3.55 × 10 4 Ω m to 2.27 × 10 6 Ω m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias, the film resistivity was in the range of 4.59 × 10 2 and 4.05 Ω m at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80 × 10 2 to 3.36 × 10 4 eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-peak and G-peak (ID/IG) correlated with the pre-exponential factor (σ0) which included charge carrier density and density of states.  相似文献   

13.
Zinc oxide possesses many interesting properties, such as modifiable conductivity, wide band gap, high excitonic binding energy, piezo-electric polarisation and cathodoluminiscence. In this study transparent conducting aluminium doped zinc oxide (ZnO:Al) thin films were deposited on float glass substrates by tailor made spray pyrolysis with adaptation for measuring the actual temperature of the substrate surface during deposition. The films were characterised and the effect of aluminium doping concentration [Al/Zn] on their optical, electrical and structural properties was investigated as a function of aluminium doping between 0 and 10 at.%. There was widening of optical band gap with increasing doping concentration. ZnO:Al films with low resistivity of 2.8 × 10−2 Ω cm and high transmittance of over 85% at 550 nm which are crucial for opto-electrical applications were obtained at a doping ratio of 2 at.%.  相似文献   

14.
The structure and electrical properties of nanostructured Al-doped ZnO (AZO)/ZnO bilayers grown as potential solar cell electrodes by pulsed laser deposition on (0001) sapphire substrates are investigated. Transmission and scanning electron microscopy and X-ray diffraction show a narrow temperature window around 350–450 °C where nanostructures are formed. 2-D mapping of electrical conductivity by tunnelling atomic force microscopy showed that these nanostructures provided low resistance pathways, but that the overall film resistivity increased for substrate temperatures above 350 °C. The reasons for this are discussed.  相似文献   

15.
Thin films of un-doped and Mn-doped CuO nanostructures have been deposited on glass substrates via the SILAR method. The morphological, compositional, structural and optical properties of the films have been investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction analysis and UV–vis spectrophotometry. The analyzed results indicate that the obtained films consist of plate-like nanostructures. From the EDS analysis it is seen that Mn-doping concentration affects the shapes of the nanostructures. XRD results show that all of the films have monoclinic structure. From the room temperature UV–vis analysis it is found that the optical band gap of the films increases with increasing Mn-doping concentrations.  相似文献   

16.
In this work, bio-based poly(ethylene 2,5-furandicarboxylate) (PEF) films were prepared by drop-casting method and used as substrates for depositing Ga-doped ZnO (GZO) transparent conductive thin films. Results showed that the 300-nm GZO thin films deposited on PEF substrates exhibited haze values above 65% at 550 nm without post-treatment. The high haze value was because of the large surface roughness of PEF films. The total optical transmittance and electrical properties of GZO thin films on PEF were comparable to those of GZO thin films on PET. The present study provides a simple way for the sputtering deposition of high-haze transparent conductive thin films on flexible substrates.  相似文献   

17.
Dependence of the electrical and optical properties of In2O3–10 wt% ZnO (IZO) thin films deposited on glass substrates by RF magnetron sputtering on the annealing atmosphere was investigated. The electrical resistivities of indium zinc oxide (IZO) thin films deposited on glass substrate can be effectively decreased by annealing in an N2 + 10% H2 atmosphere. Higher temperature (200 °C) annealing is more effective in decreasing the electrical resistivity than lower temperature (100 °C) annealing. The lowest resistivity of 6.2 × 10−4 Ω cm was obtained by annealing at 200 °C in an N2 + 10% H2 atmosphere. In contrast, the resistivity was increased by annealing in an oxygen atmosphere. The transmittance of IZO films is improved by annealing regardless of the annealing temperature.  相似文献   

18.
Perovskite oxide SrVO3 (SVO) is a transparent conductor with excellent optical and electrical properties. Most of the previous works have focused on (001)-oriented SVO thin films. As an alternative to tin-doped indium oxide (ITO), the other orientations of SVO thin films are important to be considered as well. In the present work, the optical and electrical properties of (111)-oriented SVO epitaxial films have been investigated. Excellent electrical conductivity (2.92?×?104?S?cm?1) and optical transparency (56.6%) have been demonstrated, which are comparable to those of ITO and expand the applications of epitaxial SVO thin films in other orientations as transparent conducting oxide.  相似文献   

19.
Sprayed ZnO films were grown on glass substrate at 400 °C using zinc chloride as precursor with different molar concentrations varying from 0.05 to 0.2 M. X-ray diffraction patterns reveal that ZnO films are polycrystalline with hexagonal wurtzite structure with preferred orientation in (002) plane. Optical measurements show that transmittance reaches a maximum value of 95% in the visible region for ZnO films prepared from precursor with 0.05 M concentration. The films obtained from the precursor with 0.1 M concentration have the highest electrical conductivity and photocurrent values.  相似文献   

20.
In the present work, ZnO thin films were irradiated with 700?keV Au+ ions at different fluence (1?× 1013, 1?× 1014, 2?× 1014 and 5?× 1014 ions/cm2). The structural, morphological, optical and electrical properties of pristine and irradiated ZnO thin films were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscope (SEM), spectroscopy ellipsometry (SE) and four point probe technique respectively. XRD results showed that the crystallite size decreased from pristine value at the fluence 1?×?1013 ions/cm2, with further increase of ion fluence the crystallite size also increased due to which the crystallinity of thin films improved. SEM micrographs showed acicular structures appeared on the ZnO thin film surface at high fluence of 5?×?1014 ions/cm2. FTIR showed absorption band splitting due to the growth of ZnO nanostructures. The optical study revealed that the optical band gap of ZnO thin films changed from 3.08?eV (pristine) to 2.94?eV at the high fluence (5?× 1014 ions/cm2). The electrical resistivity of ZnO thin film decreases with increasing ion fluence. All the results can be attributed to localized heating effect by ions irradiation of thin films and well correlated with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号