共查询到20条相似文献,搜索用时 31 毫秒
1.
Winn Aung Atsushi B. Tsuji Aya Sugyo Masayuki Fujinaga Ming-Rong Zhang Tatsuya Higashi 《International journal of molecular sciences》2021,22(15)
Photoimmunotherapy (PIT) is an upcoming potential cancer treatment modality, the effect of which is improved in combination with chemotherapy. PIT causes a super-enhanced permeability and retention (SUPR) effect. Here, we quantitatively evaluated the SUPR effect using radiolabeled drugs of varying molecular weights (18F-5FU, 111In-DTPA, 99mTc-HSA-D, and 111In-IgG) to determine the appropriate drug size. PIT was conducted with an indocyanine green-labeled anti-HER2 antibody and an 808 nm laser irradiation. Mice were subcutaneously inoculated with HER2-positive cells in both hindlimbs. The tumor on one side was treated with PIT, and the contralateral side was not treated. The differences between tumor accumulations were evaluated using positron emission tomography or single-photon emission computed tomography. Imaging studies found increased tumor accumulation of agents after PIT. PIT-treated tumors showed significantly increased uptake of 18F-5FU (p < 0.001) and 99mTc-HSA-D (p < 0.001). A tendency toward increased accumulation of 111In-DTPA and 111In-IgG was observed. These findings suggest that some low- and medium-molecular-weight agents are promising candidates for combined PIT, as are macromolecules; hence, administration after PIT could enhance their efficacy. Our findings encourage further preclinical and clinical studies to develop a combination therapy of PIT with conventional anticancer drugs. 相似文献
2.
Hye Jin Lee Emily B. Ehlerding Prof. Dr. Weibo Cai 《Chembiochem : a European journal of chemical biology》2019,20(4):422-436
Chronic inflammatory diseases are often progressive, resulting not only in physical damage to patients but also social and economic burdens, making early diagnosis of them critical. Nuclear medicine techniques can enhance the detection of inflammation by providing functional as well as anatomical information when combined with other modalities such as magnetic resonance imaging, computed tomography or ultrasonography. Although small molecules and peptides were mainly used for the treatment and imaging of chronic inflammatory diseases in the past, antibodies and their fragments have also been emerging for chronic inflammatory diseases as they show high specificity to their targets and can have various biological half-lives depending on how they are engineered. In addition, imaging with antibodies or their fragments can visualize the in vivo biodistribution of the probes or help monitor therapeutic responses, thereby providing physicians with a greater understanding of drug behavior in vivo and another means of monitoring their patients. In this review, we introduce various targets and radiolabeled antibody-based probes for the molecular imaging of chronic inflammatory diseases in preclinical and clinical studies. Targets can be classified into three different categories: 1) cell-adhesion molecules, 2) surface markers on immune cells, and 3) cytokines or enzymes. The limitations and future directions of using radiolabeled antibodies for imaging inflammatory diseases are also discussed. 相似文献
3.
The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination. 相似文献
4.
Luca Filippi Viviana Frantellizzi Agostino Chiaravalloti Mariano Pontico Maria Silvia De Feo Ferdinando Corica Melissa Montebello Orazio Schillaci Giuseppe De Vincentis Oreste Bagni 《International journal of molecular sciences》2021,22(6)
Metastatic castration-resistant prostate cancer (mCRPC) represents a condition of progressive disease in spite of androgen deprivation therapy (ADT), with a broad spectrum of manifestations ranging from no symptoms to severe debilitation due to bone or visceral metastatization. The management of mCRPC has been profoundly modified by introducing novel therapeutic tools such as antiandrogen drugs (i.e., abiraterone acetate and enzalutamide), immunotherapy through sipuleucel-T, and targeted alpha therapy (TAT). This variety of approaches calls for unmet need of biomarkers suitable for patients’ pre-treatment selection and prognostic stratification. In this scenario, imaging with positron emission computed tomography (PET/CT) presents great and still unexplored potential to detect specific molecular and metabolic signatures, some of whom, such as the prostate specific membrane antigen (PSMA), can also be exploited as therapeutic targets, thus combining diagnosis and therapy in the so-called “theranostic” approach. In this review, we performed a web-based and desktop literature research to investigate the prognostic and theranostic potential of several PET imaging probes, such as 18F-FDG, 18F-choline and 68Ga-PSMA-11, also covering the emerging tracers still in a pre-clinical phase (e.g., PARP-inhibitors’ analogs and the radioligands binding to gastrin releasing peptide receptors/GRPR), highlighting their potential for defining personalized care pathways in mCRPC. 相似文献
5.
6.
Ansje Fortuin Maarten de Rooij Patrik Zamecnik Uwe Haberkorn Jelle Barentsz 《International journal of molecular sciences》2013,14(7):13842-13857
Knowledge on lymph node metastases is crucial for the prognosis and treatment of prostate cancer patients. Conventional anatomic imaging often fails to differentiate benign from metastatic lymph nodes. Pelvic lymph node dissection is an invasive technique and underestimates the extent of lymph node metastases. Therefore, there is a need for more accurate non-invasive diagnostic techniques. Molecular and functional imaging has been subject of research for the last decades, in this respect. Therefore, in this article the value of imaging techniques to detect lymph node metastases is reviewed. These techniques include scintigraphy, sentinel node imaging, positron emission tomography/computed tomography (PET/CT), diffusion weighted magnetic resonance imaging (DWI MRI) and magnetic resonance lymphography (MRL). Knowledge on pathway and size of lymph node metastases has increased with molecular and functional imaging. Furthermore, improved detection and localization of lymph node metastases will enable (focal) treatment of the positive nodes only. 相似文献
7.
Julian L. Goggi Siddesh V. Hartimath Shivashankar Khanapur Boominathan Ramasamy Zan Feng Chin Peter Cheng Hui Xian Chin You Yi Hwang Edward G. Robins 《International journal of molecular sciences》2022,23(21)
The low response rates associated with immune checkpoint inhibitor (ICI) use has led to a surge in research investigating adjuvant combination strategies in an attempt to enhance efficacy. Repurposing existing drugs as adjuvants accelerates the pace of cancer immune therapy research; however, many combinations exacerbate the immunogenic response elicited by ICIs and can lead to adverse immune-related events. Metformin, a widely used type 2 diabetes drug is an ideal candidate to repurpose as it has a good safety profile and studies suggest that metformin can modulate the tumour microenvironment, promoting a favourable environment for T cell activation but has no direct action on T cell activation on its own. In the current study we used PET imaging with [18F]AlF-NOTA-KCNA3P, a radiopharmaceutical specifically targeting KV1.3 the potassium channel over-expressed on active effector memory T-cells, to determine whether combining PD1 with metformin leads to an enhanced immunological memory response in a preclinical colorectal cancer model. Flow cytometry was used to assess which immune cell populations infiltrate the tumours in response to the treatment combination. Imaging with [18F]AlF-NOTA-KCNA3P demonstrated that adjuvant metformin significantly improved anti-PD1 efficacy and led to a robust anti-tumour immunological memory response in a syngeneic colon cancer model through changes in tumour infiltrating effector memory T-cells. 相似文献
8.
Lucas Beroske Tim Van den Wyngaert Sigrid Stroobants Pieter Van der Veken Filipe Elvas 《International journal of molecular sciences》2021,22(8)
The molecular imaging of apoptosis remains an important method for the diagnosis and monitoring of the progression of certain diseases and the evaluation of the efficacy of anticancer apoptosis-inducing therapies. Among the multiple biomarkers involved in apoptosis, activated caspase-3 is an attractive target, as it is the most abundant of the executioner caspases. Nuclear imaging is a good candidate, as it combines a high depth of tissue penetration and high sensitivity, features necessary to detect small changes in levels of apoptosis. However, designing a caspase-3 radiotracer comes with challenges, such as selectivity, cell permeability and transient caspase-3 activation. In this review, we discuss the different caspase-3 radiotracers for the imaging of apoptosis together with the challenges of the translation of various apoptosis-imaging strategies in clinical trials. 相似文献
9.
Barbara Palumbo Tommaso Buresta Susanna Nuvoli Angela Spanu Orazio Schillaci Mario Luca Fravolini Isabella Palumbo 《International journal of molecular sciences》2014,15(6):9878-9893
Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. 相似文献
10.
Avan Kader Jan O. Kaufmann Dilyana B. Mangarova Jana Moeckel Lisa C. Adams Julia Brangsch Jennifer L. Heyl Jing Zhao Christine Verlemann Uwe Karst Federico Collettini Timo A. Auer Bernd Hamm Marcus R. Makowski 《International journal of molecular sciences》2023,24(1)
Constant interactions between tumor cells and the extracellular matrix (ECM) influence the progression of prostate cancer (PCa). One of the key components of the ECM are collagen fibers, since they are responsible for the tissue stiffness, growth, adhesion, proliferation, migration, invasion/metastasis, cell signaling, and immune recruitment of tumor cells. To explore this molecular marker in the content of PCa, we investigated two different tumor volumes (500 mm3 and 1000 mm3) of a xenograft mouse model of PCa with molecular magnetic resonance imaging (MRI) using a collagen-specific probe. For in vivo MRI evaluation, T1-weighted sequences before and after probe administration were analyzed. No significant signal difference between the two tumor volumes could be found. However, we detected a significant difference between the signal intensity of the peripheral tumor area and the central area of the tumor, at both 500 mm3 (p < 0.01, n = 16) and at 1000 mm3 (p < 0.01, n = 16). The results of our histologic analyses confirmed the in vivo studies: There was no significant difference in the amount of collagen between the two tumor volumes (p > 0.05), but within the tumor, higher collagen expression was observed in the peripheral area compared with the central area of the tumor. Laser ablation with inductively coupled plasma mass spectrometry further confirmed these results. The 1000 mm3 tumors contained 2.8 ± 1.0% collagen and the 500 mm3 tumors contained 3.2 ± 1.2% (n = 16). There was a strong correlation between the in vivo MRI data and the ex vivo histological data (y = −0.068x + 1.1; R2 = 0.74) (n = 16). The results of elemental analysis by inductively coupled plasma mass spectrometry supported the MRI data (y = 3.82x + 0.56; R2 = 0.79; n = 7). MRI with the collagen-specific probe in PCa enables differentiation between different tumor areas. This may help to differentiate tumor from healthy tissue, potentially identifying tumor areas with a specific tumor biology. 相似文献
11.
Fatemeh Khodadust Aiarpi Ezdoglian Maarten M. Steinz Judy R. van Beijnum Gerben J. C. Zwezerijnen Gerrit Jansen Sander W. Tas Conny J. van der Laken 《International journal of molecular sciences》2022,23(13)
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA. 相似文献
12.
Bing Guan Ning Zhou Cheng-Yang Wu Songye Li Yu-An Chen Sashi Debnath Mia Hofstad Shihong Ma Ganesh V. Raj Dalin He Jer-Tsong Hsieh Yiyun Huang Guiyang Hao Xiankai Sun 《International journal of molecular sciences》2021,22(23)
Neuroendocrine prostate cancer (NEPC) is an aggressive and lethal variant of prostate cancer (PCa), and it remains a diagnostic challenge. Herein we report our findings of using synaptic vesicle glycoprotein 2 isoform A (SV2A) as a promising marker for positron emission tomography (PET) imaging of neuroendocrine differentiation (NED). The bioinformatic analyses revealed an amplified SV2A gene expression in clinical samples of NEPC versus castration-resistant PCa with adenocarcinoma characteristics (CRPC-Adeno). Importantly, significantly upregulated SV2A protein levels were found in both NEPC cell lines and tumor tissues. PET imaging studies were carried out in NEPC xenograft models with 18F-SynVesT-1. Although 18F-SynVesT-1 is not a cancer imaging agent, it showed a significant uptake level in the SV2A+ tumor (NCI-H660: 0.70 ± 0.14 %ID/g at 50–60 min p.i.). The SV2A blockade resulted in a significant reduction of tumor uptake (0.25 ± 0.03 %ID/g, p = 0.025), indicating the desired SV2A imaging specificity. Moreover, the comparative PET imaging study showed that the DU145 tumors could be clearly visualized by 18F-SynVesT-1 but not 68Ga-PSMA-11 nor 68Ga-DOTATATE, further validating the role of SV2A-targeted imaging for noninvasive assessment of NED in PCa. In conclusion, we demonstrated that SV2A, highly expressed in NEPC, can serve as a promising target for noninvasive imaging evaluation of NED. 相似文献
13.
Olivia Wegrzyniak Maria Rosestedt Olof Eriksson 《International journal of molecular sciences》2021,22(14)
Pathological fibrosis of the liver is a landmark feature in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Diagnosis and assessment of progress or treatment efficacy today requires biopsy of the liver, which is a challenge in, e.g., longitudinal interventional studies. Molecular imaging techniques such as positron emission tomography (PET) have the potential to enable minimally invasive assessment of liver fibrosis. This review will summarize and discuss the current status of the development of innovative imaging markers for processes relevant for fibrogenesis in liver, e.g., certain immune cells, activated fibroblasts, and collagen depositions. 相似文献
14.
Katie Rubitschung Amber Sherwood Andrew P. Crisologo Kavita Bhavan Robert W. Haley Dane K. Wukich Laila Castellino Helena Hwang Javier La Fontaine Avneesh Chhabra Lawrence Lavery Orhan K.
z 《International journal of molecular sciences》2021,22(21)
Diabetic foot infection is the leading cause of non-traumatic lower limb amputations worldwide. In addition, diabetes mellitus and sequela of the disease are increasing in prevalence. In 2017, 9.4% of Americans were diagnosed with diabetes mellitus (DM). The growing pervasiveness and financial implications of diabetic foot infection (DFI) indicate an acute need for improved clinical assessment and treatment. Complex pathophysiology and suboptimal specificity of current non-invasive imaging modalities have made diagnosis and treatment response challenging. Current anatomical and molecular clinical imaging strategies have mainly targeted the host’s immune responses rather than the unique metabolism of the invading microorganism. Advances in imaging have the potential to reduce the impact of these problems and improve the assessment of DFI, particularly in distinguishing infection of soft tissue alone from osteomyelitis (OM). This review presents a summary of the known pathophysiology of DFI, the molecular basis of current and emerging diagnostic imaging techniques, and the mechanistic links of these imaging techniques to the pathophysiology of diabetic foot infections. 相似文献
15.
Joël Mercier Laurence Archen Véronique Bollu Stéphane Carré Yves Evrard Dr. Eric Jnoff Dr. Benoît Kenda Bénédicte Lallemand Dr. Philippe Michel Dr. Florian Montel Dr. Florence Moureau Nathalie Price Dr. Yannick Quesnel Dr. Xavier Sauvage Dr. Anne Valade Dr. Laurent Provins 《ChemMedChem》2014,9(4):693-698
The role of the synaptic vesicle protein 2A (SV2A) protein, target of the antiepileptic drug levetiracetam, is still mostly unknown. Considering its potential to provide in vivo functional insights into the role of SV2A in epileptic patients, the development of an SV2A positron emission tomography (PET) tracer has been undertaken. Using a 3D pharmacophore model based on close analogues of levetiracetam, we report the rationale design of three heterocyclic non‐acetamide lead compounds, UCB‐A, UCB‐H and UCB‐J, the first single‐digit nanomolar SV2A ligands with suitable properties for development as PET tracers. 相似文献
16.
17.
18.
19.
Sushil K. Mishra Yoshiki Yamaguchi Makoto Higuchi Naruhiko Sahara 《International journal of molecular sciences》2021,22(1)
In recent years, it has been realized that the tau protein is a key player in multiple neurodegenerative diseases. Positron emission tomography (PET) radiotracers that bind to tau filaments in Alzheimer’s disease (AD) are in common use, but PET tracers binding to tau filaments of rarer, age-related dementias, such as Pick’s disease, have not been widely explored. To design disease-specific and tau-selective PET tracers, it is important to determine where and how PET tracers bind to tau filaments. In this paper, we present the first molecular modelling study on PET probe binding to the structured core of tau filaments from a patient with Pick’s disease (TauPiD). We have used docking, molecular dynamics simulations, binding-affinity and tunnel calculations to explore TauPiD binding sites, binding modes, and binding energies of PET probes (AV-1451, MK-6240, PBB3, PM-PBB3, THK-5351 and PiB) with TauPiD. The probes bind to TauPiD at multiple surface binding sites as well as in a cavity binding site. The probes show unique surface binding patterns, and, out of them all, PM-PBB3 proves to bind the strongest. The findings suggest that our computational workflow of structural and dynamic details of the tau filaments has potential for the rational design of TauPiD specific PET tracers. 相似文献
20.
Luca Urso Luigi Manco Angelo Castello Laura Evangelista Gabriele Guidi Massimo Castellani Luigia Florimonte Corrado Cittanti Alessandro Turra Stefano Panareo 《International journal of molecular sciences》2022,23(21)
Breast cancer (BC) is a heterogeneous malignancy that still represents the second cause of cancer-related death among women worldwide. Due to the heterogeneity of BC, the correct identification of valuable biomarkers able to predict tumor biology and the best treatment approaches are still far from clear. Although molecular imaging with positron emission tomography/computed tomography (PET/CT) has improved the characterization of BC, these methods are not free from drawbacks. In recent years, radiomics and artificial intelligence (AI) have been playing an important role in the detection of several features normally unseen by the human eye in medical images. The present review provides a summary of the current status of radiomics and AI in different clinical settings of BC. A systematic search of PubMed, Web of Science and Scopus was conducted, including all articles published in English that explored radiomics and AI analyses of PET/CT images in BC. Several studies have demonstrated the potential role of such new features for the staging and prognosis as well as the assessment of biological characteristics. Radiomics and AI features appear to be promising in different clinical settings of BC, although larger prospective trials are needed to confirm and to standardize this evidence. 相似文献