首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2017,43(6):4880-4887
To improve oxidation resistance of carbon/carbon (C/C) composites, a multiphase double-layer ZrB2-CrSi2-SiC-Si/SiC coating was prepared on the surface of C/C composites by pack cementation. Thermogravimetry analysis showed that the as-prepared coating could provide effective oxidative protection for C/C composites from room temperature to 1490 °C. After thermal cycling between 1500 °C and room temperature, the fracture behaviors of the as-prepared specimens changed and their residual flexural strengths decreased as thermal cycles increased. The specimen after 20 thermal cycles presented pseudo-plastic fracture characteristics and relatively high residual flexural strength (83.1%), while the specimen after 30 thermal cycles failed catastrophically without fiber pullout due to the severe oxidation damage of C/C substrate especially the brittleness of the reinforcement fibers.  相似文献   

2.
《Ceramics International》2017,43(6):5080-5088
Crack formation in Si3N4 active metal brazing (AMB) ceramic substrates and delamination of copper layers on the AMB substrates subjected to temperature cycling from −40 to 250 °C were investigated to evaluate the reliability of these substrates under harsh environments. Acoustic scanning microscopy (ASM) observation of the Si3N4 substrates with 0.30 mm thick Cu layers revealed crack formation beneath the corner of the copper plate after 100 cycles, whereas no cracks were detected on the Si3N4 substrate with a 0.15 mm thick Cu layer, even after 1000 cycles. The residual bending strength of the Si3N4 substrates with 0.30 mm thick Cu layers was 78% of the as-received substrate after 10 thermal cycles, and gradually decreased with an increase in the number of thermal cycles until ca. 65% of the initial strength after 1000 cycles. The Si3N4 substrates with 0.15 mm thick Cu layers exhibited a gentler degradation of residual strength than those with 0.30 mm thick Cu layers. In contrast, the residual bending strength of AlN-AMB substrates with 0.15 mm or 0.30 mm thick Cu layers were reduced by 50% within only 10 thermal cycles. The depth of cracks developed during the thermal cycles was measured from the fractured surface of the Si3N4-AMB and AlN-AMB substrates. The crack-growth rate in the Si3N4-AMB substrates was much slower than that in the AlN-AMB substrates, which could account for the different degradation behavior of the residual bending strength.  相似文献   

3.
《Ceramics International》2016,42(12):13547-13554
Cordierite-spodumene composite ceramics with 5, 10, 15 wt% spodumene used for solar heat transmission pipeline were in-situ prepared via pressureless sintering from kaolin, talc, γ-Al2O3 and spodumene. Effects of spodumene on densification, mechanical properties, thermal shock resistance, phase composition and microstructure of the composite ceramics were investigated. The results showed that spodumene used as flux material decreased the sintering temperature greatly by 40–80 °C, and improved densification and mechanical properties of the composite ceramics. Especially, sample A3 with 10 wt% spodumene additive sintered at 1380 °C exhibited the best bending strength and thermal shock resistance. The bending strengths of A3 before and after 30 thermal shock cycles (wind cooling from 1100 °C to room temperature) were 102.88 MPa and 96.29 MPa, respectively. XRD analysis indicated that the main phases of the samples before 30 thermal shock cycles were α-cordierite, α-quartz and MgAl2O4, and plenty of β-spodumene appeared after thermal shock. SEM micrographs illustrated that the submicron β-spodumene grains generated at the grain boundaries after thermal shock improved the thermal shock resistance. It is believed that the cordierite-spodumene composite ceramics can be a promising candidate material for heat transmission pipeline in the solar thermal power generation.  相似文献   

4.
《Ceramics International》2016,42(16):18148-18153
Two laminated ZrB2-SiC based ceramics were prepared by tape casting and subsequent hot pressing, with BN (LZB) and graphite (LZG ) as interface layers. The LZB specimen presents flexural strength of 381 MPa at room temperature and 111 MPa at 1500 °C; while the LZG specimen shows flexural strength of 414 MPa at room temperature and 377 MPa at 1500 °C. In addition, the flexural strength of LZG specimen is always higher than that of the LZB specimen in the temperature range from room temperature to 1500 °C. Such higher strength is attributed to the healing of surface microcracks and pores by the SiO2 glass phase, producing less glass phase in graphite interface layers at high temperature.  相似文献   

5.
《Ceramics International》2016,42(12):13932-13943
Commercially available fused magnesia and sintered alumina sources were used to form reaction sintered spinel by solid oxide reaction route in a single firing. The effect of the addition of four different additives, namely MgCl2, LiF, AlCl3, and MnO2, at 2 wt% level was studied. Mixed oxide compositions were compacted under a uniaxial pressure of 150 MPa and then sintered between 1200 and 1600 °C. The dilatometric study and phase analysis was done to observe the spinel formation reaction. Densification study of the sintered product was done to understand the effect of additives. Cold Crushing strength and thermal shock resistance of 1600° sintered pellets were studied. Microstructural study using field emission scattered electron microscopy (FESEM) was also done to understand the grain development on sintering in the compositions and the effect of different additives on sintering. LiF and MgCl2 were found to strongly enhance the spinel formation reaction. Bulk density values were found to be lower for the additive containing batches at 1200 °C due to enhanced spinel formation but higher at 1600 °C due to greater sintering. Strength values were strongly enhanced by LiF and MnO2 due to the development of dense, compact microstructure. Also, additives containing compositions showed much higher strength retainment even after 6 cycles of thermal shock.  相似文献   

6.
In order to improve the oxidation and thermal shock resistance of 2D C/SiC composites, dense SiB4–SiC matrix was in situ formed in 2D C/SiC composites by a joint process of slurry infiltration and liquid silicon infiltration. The synthesis mechanism of SiB4 was investigated by analyzing the reaction products of B4C–Si system. Compared with the porous C/SiC composites, the density of C/SiC–SiB4 composites increased from 1.63 to 2.23 g/cm3 and the flexural strength increased from 135 to 330 MPa. The thermal shock behaviors of C/SiC and C/SiC–SiB4 composites protected with SiC coating were studied using the method of air quenching. C/SiC–SiB4 composites displayed good resistance to thermal shock, and retained 95% of the original strength after being quenched in air from 1300 °C to room temperature for 60 cycles, which showed less weight loss than C/SiC composite.  相似文献   

7.
This paper proposes a new strategy to design the high-performance Al2O3/Mo self-lubricated composites with excellent practical value and durability. The relationships among the relevant structural parameters, interfacial compositions, mechanical and thermal properties of the materials were analyzed. Results show that the apparent toughness, bending strength and work of fracture of the optimal Al2O3/Mo-Al2O3 laminated materials could reach 8.1 MPa m1/2, 634 MPa and 330 J m−2. Moreover, the new-developed materials exhibited a good self-lubricating property on every surface and thermal shock resistance. The friction coefficients of all the surfaces can be as low as 0.45 at 800 °C, and the retention rates of strength and toughness after thermal shock between 25 °C and 1000 °C for 50 cycles could reach 98.8% and 85.3%, respectively. The new strategy is based on a combination strong interfacial bonding and with accelerated formation of a reasonable residual stress and enhanced grain-interlocking among particles during fatigue.  相似文献   

8.
Residual strength (room temperature strength after exposure in air at high temperatures) of hot pressed ZrB2–SiC composites was evaluated as function of SiC contents (10–30 vol%) as well as exposure temperatures for 5 h (1000–1700 °C). Multilayer oxide scale structures were found after exposures. The composition and thickness of these multilayered oxide scale structure was dependent on exposure temperature and SiC contents in composites. After exposure to 1000 °C for 5 h, the residual strength of ZrB2–SiC composites improved by nearly 60% compared to the as-hot pressed composites with 20 and 30 vol% SiC. On the other hand, the residual strength of these composites remained unchanged after 1500 °C for 5 h. A drastic degradation in residual strength was observed in composites with 20 and 30 vol% SiC after exposure to 1700 °C for 5 h in ZrB2–SiC. An attempt was made to correlate the microstructural changes and oxide scales with residual strength with respect to variation in SiC content and temperature of expsoure.  相似文献   

9.
The incomplete nitriding and heterogeneity structure of large-size Si3N4-bonded SiC refractories limited its application in refractories industry. The objective of this work was to provide a way that adding carbon in matrix with the expectations of carbon could reacted with free-Si and transformed into SiC after nitridation. The effects of carbon sources on the bonded morphologies and nitridation process of Si3N4 bonded SiC refractories were investigated. Results indicated the strength and Young’s-modulus of specimen with carbon black increased to 39.4 MPa and 103.89 GPa from 29.8 MPa and 73.43 GPa, respectively. The residual Young’s-modulus also improved from 44.13 GPa to 62.9 GPa after 9-quenching cycles. For specimen with graphite, residual graphite after nitridation resulted in a definite strength decline, but residual strength after quenching was improved. Moreover, analysis results on N-elements indicated surprisingly improvement in the nitriding degree for specimen with carbon black. The microstructure evolution and mechanism associating with the enhanced nitriding process was discussed.  相似文献   

10.
《Ceramics International》2007,33(6):905-909
Three-dimensional braided carbon fiber-reinforced silicon carbide (3D-Cf/SiC) composites were prepared through eight cycles of infiltration of polycarbosilane (PCS)/divinylbenzene (DVB) and subsequent pyrolysis under an inert atmosphere. The effects of infiltration processes on the microstructure and mechanical properties of the Cf/SiC composites were investigated. The results showed that increasing temperature could reduce the viscosity of the PCS/DVB solution, which was propitious to the infiltration processes. The density and flexural strength of 3D-Cf/SiC composites fabricated with vacuum infiltration were 1.794 g cm−3 and 557 MPa, respectively. Compared to vacuum infiltration, heating and pressure infiltration could improve the infiltration efficiency so that the composites exhibited higher density and flexural strength, i.e., 1.944 g cm−3 and 662 MPa. When tested at 1650 °C and 1800 °C in vacuum, the flexural strength reached 647 MPa and 602 MPa, respectively.  相似文献   

11.
《Ceramics International》2016,42(12):13497-13506
Si3N4/(W, Ti)C graded nano-composite ceramic tool materials with different thickness ratios and number of layers were fabricated by hot pressing technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and the microstructure and indention cracks were observed. The experiment results showed that the five-layer graded nano-composites with a thickness ratio of 0.2, which were sintered under a pressure of 30 MPa at 1700 °C in vacuum condition for 45 min, had the optimum comprehensive mechanical properties with a flexural strength of 1080.3 MPa, a hardness of 17.64 GPa, and a fracture toughness of 10.87 MPa·m1/2. The formation of elongated β-Si3N4 grains contributes to the favorable mechanical properties. The graded structure can induce residual compressive stress in the surface layer and enhance the mechanical properties. The strengthening and toughening mechanisms are a synergistic effect of intergranular and transgranular fracture, crack bridging and deflection.  相似文献   

12.
Aluminum nitride (AlN) ceramics with the concurrent addition of CaZrO3 and Y2O3 were sintered at 1450-1700 °C. The degree of densification, microstructure, flexural strength, and thermal conductivity of the resulting ceramics were evaluated with respect to their composition and sintering temperature. Specimens prepared using both additives could be sintered to almost full density at relatively low temperature (3 h at 1550 °C under nitrogen at ambient pressure); grain growth was suppressed by grain-boundary pinning, and high flexural strength over 630 MPa could be obtained. With two-step sintering process, the morphology of second phase was changed from interconnected structure to isolated structure; this two-step process limited grain growth and increased thermal conductivity. The highest thermal conductivity (156 Wm−1 K−1) was achieved by two-step sintering, and the ceramic showed moderate flexural strength (560 MPa).  相似文献   

13.
For increasing working stability of cordierite-spodumene composite ceramics for solar heat transmission pipeline, andalusite was utilized as modified additive to improve mechanical strength and thermal shock resistance of the composite ceramics. The effects of andalusite on densification, mechanical strength, thermal stability, phase composition and microstructure were studied. The experiment results showed that andalusite significantly influenced bending strength and thermal shock resistance of the composite ceramics. Especially, specimen B1 with 5 wt% andalusite sintered at 1400 °C achieved the best performances. The linear shrinkage, water absorption, apparent porosity, bulk density and bending strength were 5.62%, 0.02%, 0.06%, 2.19 g cm?3 and 104.94 MPa, respectively. After 30 thermal shock cycles (wind cooling from 1100 °C to room temperature), the residual strength of the specimen increased to 110.65 MPa, accompanying with ?5.44% strength loss rate. The XRD and SEM analysis illustrated that mullite grains with short rod-like shape could prevent crack growth of inter-granular fracture to enhance bending strength of the specimens. Furthermore, the generation of β-spodumene grains with low thermal expansion coefficient after thermal shock improved thermal shock resistance of the composite ceramics. It is considered that the cordierite-spodumene composite ceramics with high densification, good mechanical strength and excellent thermal stability can be a potential material for high temperature thermal transmission pipeline in solar thermal power generation.  相似文献   

14.
《Ceramics International》2016,42(4):5353-5361
TiB2-based composite ceramic tool materials with different amounts of TiC and SiC were fabricated via a reactive hot pressing process. The mechanical properties at room temperature and flexural strength at 800–1300 °C were tested in ambient air. The composition and microstructure before and after the high-temperature strength tests were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy-dispersive spectrometer (EDS). The flexural strength increment/degradation mechanisms at elevated temperatures were investigated. In-situ synthesized TiC improved the sinterability and mechanical properties of the materials at both room and elevated temperatures. Comparing with TTS (TiB2–15.9 wt%TiC–10.6 wt%SiC) and TS (TiB2–22.4 wt%SiC), TTS3 (TiB2–8.1 wt%TiC–16.4 wt%SiC) had the optimum room temperature mechanical properties, i.e., flexural strength of 862 MPa, fracture toughness of 6.4 MPa m1/2, hardness of 22.8 GPa, and relative density of 99.3%. The improved mechanical properties were ascribed to the fine grain size. The flexural strength of the TTS composite at 800 °C was higher than that at room temperature. The improvement of the flexural strength was attributed to the healing of preexisting flaws and the relief of residual stress. Substantial strength degradation took place when the temperature exceeded 1000 °C, due to softening of the grain boundaries, surface oxidation and elastic modulus degradation.  相似文献   

15.
《Ceramics International》2016,42(11):13256-13261
The oxidation behavior of pressureless liquid phase sintered SiC ceramics with Al2O3 and Y2O3 as sintering additives was investigated in the temperature range from 1000 °C to 1600 °C at the interval of 100 °C for 5 h. The relationship between residual flexural strength and microstructure was analyzed in detail. It was found that the SiC specimens suffered from mild oxidation below 1300 °C. The flexural strength of SiC specimens after oxidation at 1100 °C was the highest (90% of the original strength) due to the formation of dendritic grains, which filled pores and healed cracks. And the flexural strength was almost above 80% of the original flexural strength when the oxidation temperature was below 1300 °C. Meanwhile, the weight of specimens underwent steady increase. However, when the oxidation temperature was elevated to above 1400 °C, the specimens began to suffer from severe oxidation, which resulted in a lot of through pores and cracks on the surface, bringing about the sharp decrease of flexural strength to 30% of original strength when the oxidation temperature of 1600 °C was reached. And the weight of the specimens after huge increase began to show downtrend when the oxidation temperature was elevated to 1600 °C due to the spalling of oxidation products.  相似文献   

16.
《Ceramics International》2016,42(12):14066-14070
Ultrahigh temperature ZrB2-SiCw-Graphene ceramic composites are fabricated by hot pressing ZrB2-SiCw-Graphene oxide powders at 1950 °C and 30 MPa for 1 h. The microstructures of the composites are characterized by Scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The results show that multilayer graphene nanosheets are achieved by thermal reduction of graphene oxide during sintering process. Compared with monolithic ZrB2 materials, flexural strength and fracture toughness are both improved due to the synergistic effect of SiC whisker and graphene nanosheets. The toughening mechanisms mainly are the combination of SiC whisker and graphene nanosheets crack bridging, pulling out.  相似文献   

17.
《Ceramics International》2017,43(2):1762-1767
Corundum-mullite composite ceramics have high hardness, small plastic deformation and other excellent performances at high temperature. Corundum-mullite composite ceramics were fabricated from andalusite and α-Al2O3 by in-situ synthesis technology. Effects of mullite/corundum ratio and sintering temperatures on the water absorption, apparent porosity, bulk density, bending strength, thermal shock resistance, phase composition and microstructure of the sample were investigated. Results indicated that the in-situ synthesized mullite from andalusite combined with corundum satisfactorily, which significantly improved the thermal shock resistance as no crack formed after 30 cycles of thermal shock (1100 °C-room temperature, air cooling). Formula A4 (andalusite: 37.31 wt%, α-Al2O3: 62.69 wt%, TiO2 in addition: 1 wt%, mullite: corundum=6:4 in wt%) achieved the optimum properties when sintering at 1650 °C, which were listed as follows: water absorption of 0.15%, apparent porosity of 0.42%, and bulk density of 3.21 g⋅cm−3, bending strength of 117.32 MPa. The phase composition of the sintered samples before and after thermal shock tests were mullite and corundum constantly. The fracture modes of the crystals were transgranular and intergranular fractures, which could endow the samples with high thermal shock resistance.  相似文献   

18.
The oxidation behavior for ZrB2–20 vol% SiC (ZS20) and ZrB2–30 vol% SiC (ZS30) ceramics at 1500 °C was evaluated by weight gain measurements and cross-sectional microstructure analysis. Based on the oxidation results, laminated ZrB2–30 vol% SiC (ZS30)/ZrB2–25 vol% SiC (ZS25)/ZrB2–30 vol% SiC (ZS30) symmetric structure with ZS30 as the outer layer were prepared. The influence of thermal residual stress and the layer thickness ratio of outer and inner layer on the mechanical properties of ZS30/ZS25/ZS30 composites were studied. It was found that higher surface compressive stress resulted in higher flexural strength. The fracture toughness of ZS30/ZS25/ZS30 laminates was found to reach to 10.73 MPa m1/2 at the layer thickness ratio of 0.5, which was almost 2 times that of ZS30 monolithic ceramics.  相似文献   

19.
《Ceramics International》2016,42(13):14910-14917
The synthetic bone powder was studied as a raw materials for bone china, completely replacing natural bone ash raw materials. The physical and thermal properties of samples obtained by the two bone powders were tested and comparatively studied. Performance tests included pyroplastic deformation, flexural strength, bulk density, sintering shrinkage, water absorption, transmittance, thermal expansion coefficient and the thermal shock resistance. The phase composition and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results indicated that using synthetic bone powder could shorten the preparation time, reduce the sintering temperature and result in high-quality bone china. The pyroplastic deformation decreased from 9.14% to 7.92%, the three-point flexural strength increased from 123 MPa to 191 MPa, the light transmittance (at a 2-mm thickness) increased from 6.7% to 11.2%, the thermal expansion coefficient decreased from 8.24×10−6 °C−1 to 7.69×10−6 °C−1, and the thermal shock resistance increased from 140 °C to 180 °C. A continuous interface layer without cracks was produced by using the synthetic bone powder.  相似文献   

20.
《Ceramics International》2016,42(7):8000-8004
B4C–30 vol% ZrB2 and B4C–30 vol% ZrB2–10 vol% SiC ceramics were prepared using hot pressing, and their room temperature flexural strength, high temperature flexural strength and oxidation behavior were investigated and compared each other. Both room temperature and high temperature flexural strength were improved by adding SiC particles. The oxidation mechanism was also studied, showing the oxidation product of SiC sealed the porosity and cracks, which was helpful to high temperature strength and oxidation resistance improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号