首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
《Ceramics International》2017,43(2):1887-1894
Fe3O4/reduced graphene oxide (RGO) nanocomposite was synthesized by a simple hydrothermal method and then SiO2 coated onto Fe3O4 by a modified Stӧber method. The transmission electron microscopy and field emission scanning electron microscopy characterization indicate that masses of Fe3O4@SiO2 core-shell structure nanospheres attached to the RGO sheets, and that the thicknesses of SiO2 shells are about 20–40 nm. The X-ray diffractograms and Raman spectra illustrate that the synthesized samples consist of highly crystallized cubic Fe3O4, amorphous SiO2 and disorderedly stacked RGO sheets. The magnetic hysteresis loops reveal the ferromagnetic behavior of the samples at room temperature. In addition, the Fe3O4@SiO2/RGO paraffin composite exhibit excellent electromagnetic wave absorption properties at room temperature in the frequency range of 2–18 GHz, which are attributed to the effective complementarities between the dielectric loss and magnetic loss. For Fe3O4@SiO2/RGO-1 and Fe3O4@SiO2/RGO-2 nanocomposite, the minimum reflection loss can reach −26.4 dB and −16.3 dB with the thickness of 1.5 mm, respectively. The effective absorption bandwidth of the samples can reach more than 10.0 GHz with the thickness in the range of 1.5–3.0 mm. It is demonstrated that such nanocomposite could be used as a promising candidate in electromagnetic wave absorption area.  相似文献   

2.
《Ceramics International》2016,42(14):15701-15708
The reduced graphene oxide (RGO)/CoFe2O4/SnS2 composites have been successfully synthesized by two-step hydrothermal processes. TEM results show that CoFe2O4 and SnS2 nanoparticles with both diameters about 5–10 nm are well dispersed on the surface of graphene. Compared with RGO/CoFe2O4 composites, the as-prepared RGO/CoFe2O4/SnS2 composites exhibit excellent electromagnetic (EM) wave absorption properties in terms of both the maximum reflection loss and the absorption bandwidth. The maximum reflection loss of RGO/CoFe2O4/SnS2 composites is −54.4 dB at 16.5 GHz with thickness of only 1.6 mm and the absorption bandwidth with the reflection loss below −10 dB is up to 12.0 GHz (from 6.0 to 18.0 GHz) with a thickness in the range of 1.5–4.0 mm. And especially, they cover the whole X band (8.0–12.0 GHz), which could be used for military radar and direct broadcast satellite (DBS).  相似文献   

3.
《Ceramics International》2016,42(15):17116-17122
A magnetic reduced graphene oxide (MRGO) composite consisting of graphene oxide and Fe3O4 particles in the range of 5–20 nm has been prepared by the one-pot hydrothermal process. RGO nanosheets provide flexible substrates for nanoparticle decoration, while Fe3O4 nanoparticles can also effectively prevent nanosheets to restack each other. Compared with previously literature, the synthesized RGO-Fe3O4 composite exhibits excellent electromagnetic wave absorption. The minimum reflection loss (RL) value of −49.05 dB has been observed at 14.16 GHz with a thickness of 2.08 mm. The absorption bandwidth (RL<−10 dB) corresponding to the minimum RL is 4.60 GHz. The electromagnetic wave absorption properties of the RGO-Fe3O4 composite have been interpreted through the quarter-wavelength matching model.  相似文献   

4.
Absorbents with “tree-like” structures, which were composed of hollow porous carbon fibers (HPCFs) acting as “trunk” structures, carbon nanotubes (CNTs) as “branch” structures and magnetite (Fe3O4) nanoparticles playing the role of “fruit” structures were prepared by chemical vapor deposition technique and chemical reaction. Microwave reflection loss, permittivity and permeability of Fe3O4–CNTs–HPCFs composites were investigated in the frequency range of 2–18 GHz. It was proven that prepared absorbents possessed the excellent electromagnetic wave absorbing performances. The bandwidth with a reflection loss less than −15 dB covers a wide frequency range from 10.2 to 18 GHz with the thickness of 1.5–3.0 mm, and the minimum reflection loss is −50.9 dB at 14.03 GHz with a 2.5 mm thick sample layer. Microwave absorbing mechanism of the Fe3O4–CNTs–HPCFs composites is concluded as dielectric polarization and the synergetic interactions exist between Fe3O4 and CNTs–HPCFs.  相似文献   

5.
Composite sheets consisting of phenolic resin filled with a mixture of reduced graphene oxide (RGO), γ-Fe2O3 and carbon fibers have been produced by compression molding. Its electrical conductivity lies in the range 0.48–171.21 S/cm. Transmission and scanning electron microscopy observations confirm the presence of nano particles of γ-Fe2O3 (~9.8 nm) and carbon fiber (~1 mm) which gives flexural strength to composite sheets. Thermogravimetric analysis show that the thermal stability of the sheets depend upon the amount of RGO and phenol resin in the composite. Complex parameters, i.e., permittivity (ε* = ε ? ″) and permeability (μ* = μ ? ″) of RGO/γ-Fe2O3/carbon fiber have been calculated from experimental scattering parameters (S11 and S21) using theoretical calculations given in Nicholson?Ross and Weir algorithms. The microwave absorption properties of the sheets have been studied in the 8.2–12.4 GHz (X-Band) frequency range. The maximum shielding effectiveness observed is 45.26 dB, which strongly depends on dielectric loss and volume fraction of γ-Fe2O3 in RGO matrix.  相似文献   

6.
《Ceramics International》2017,43(16):13146-13153
Ideal electromagnetic absorbing materials with lightweight and high efficiency have broad application outlook in military and civil fields. In this work, a 3D nanostructure material by hybridizing Fe3O4 nanocrystals and reduced graphene oxide (Fe3O4/rGO) were synthesized through an environmental-friendly one-pot solvothermal method. The effect of GO loading on electromagnetic (EM) wave absorption characteristic of Fe3O4/rGO was investigated. The introduction of rGO sheets not only prevented Fe3O4 from agglomerating, also improved the absorption performance of Fe3O4/rGO hybrids. With an appropriate addition, Fe3O4/rGO obtained a minimum reflection loss (RL) of −22.7 dB and the absorption bandwidth was 3.13 GHz (90% absorption).  相似文献   

7.
《Ceramics International》2016,42(6):7099-7106
BaAl2Si2O8 (BAS) glass–ceramic powders were prepared by sol–gel method. Graphene oxide (GO)/BAS mixture powders were prepared by a simple mixing process of GO and BAS. Dense and uniform reduced graphene oxide (RGO)/BAS composites were fabricated by the hot-pressing of GO/BAS, which was accompanied by the in-situ thermal reduction of GO. Microstructure, phase composition, dielectric and electromagnetic wave (EM) absorption properties of RGO/BAS were investigated. The results reveal that RGO can promote the hexacelsian-to-celsian phase transformation of BAS. In the frequency range from 8 GHz to 12 GHz, the complex permittivity of RGO/BAS increases with increasing RGO content. The composite with 1.5 wt% of RGO shows good EM absorbing ability. When the sample thickness is 2.1 mm, the minimum reflection coefficient (RC) reaches −33 dB, and the effective absorption bandwidth is more than 3.1 GHz.  相似文献   

8.
《Ceramics International》2017,43(3):3443-3447
Hierarchical SnO2@ZnO nanostructures are successfully synthesized in a large scale by using a simple hydrothermal method. The SnO2 nanowires epitaxially grow on the non-polarized plane of ZnO nanorods with a six-fold symmetry. The radar wave absorbing and infrared emissivity properties of hierarchical SnO2@ZnO nanostructures are studied. Such hybrid hierarchical SnO2@ZnO nanostructures show enhanced radar and infrared compatible stealth properties than ZnO or SnO2. The minimum reflection loss (RL) is −23.51 dB at 9.2 GHz with a bandwidth (RL<−10 dB) of 3.5 GHz and the average infrared emissivity in middle-infrared band and far-infrared band are around 0.65 and 0.89, respectively.  相似文献   

9.
In this study, magnetic Fe3O4 particles were prepared from copper/iron ore cider by precipitation oxidization method. The yield of Fe was 82.6 at%. XRD, TEM, SEM, EDS and microwave network analyzer were used to characterize the particles. The results showed that Fe3O4 particles were well crystallized and possessed an octahedral morphology, and the crystal size was about 200 nm; the sample with 70 wt% Fe3O4 exhibited the optimal absorbing ability, the minimum reflection loss was ?42.7 dB at 14.08 GHz and the bandwidth less than ?10 dB was about 4.2 GHz when the sample thickness was 1.9 mm. It was clearly demonstrated that the Fe3O4 particles prepared from copper/iron ore cider could be used as an effective microwave absorbing material.  相似文献   

10.
Hollow polyaniline/Fe3O4 microsphere composites with electromagnetic properties were successfully prepared by decorating the surface of hollow polyaniline/sulfonated polystyrene microspheres with various amounts of Fe3O4 magnetic nanoparticles using sulfonated polystyrene (SPS) as hard templates and then removing the templates with tetrahydrofuran (THF). The synthesized hollow microsphere composites were characterized by FT-IR, UV/Vis spectrophotometry, SEM, XRD, elemental analysis, TGA, and measurement of their magnetic parameters. Experimental results indicated that the microspheres were well-defined in size (1.50–1.80 μm) and shape, and that they were superparamagnetic with maximum saturation magnetization values of 3.88 emu/g with a 12.37 wt% content of Fe3O4 magnetic nanoparticles. Measurements of the electromagnetic parameters of the samples showed that the maximum bandwidth was 8.0 GHz over ?10 dB of reflection loss in the 2–18 GHz range when the Fe3O4 content in the hollow polyaniline/Fe3O4 microsphere composites was 7.33 wt%.  相似文献   

11.
Superparamagnetic Fe3O4 nanoparticles were anchored on reduced graphene oxide (RGO) nanosheets by co-precipitation of iron salts in the presence of different amounts of graphene oxide (GO). A pH dependent zeta potential and good aqueous dispersions were observed for the three hybrids of Fe3O4 and RGO. The structure, morphology and microstructure of the hybrids were examined by X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, Raman and X-ray photoelectron spectroscopy. TEM images reveal lattice fringes (d311 = 0.26 nm) of Fe3O4 nanoparticles with clear stacked layers of RGO nanosheets. The textural properties including the pore size distribution and loading of Fe3O4 nanoparticles to form Fe3O4–RGO hybrids have been controlled by changing the concentration of GO. An observed maximum (~10 nm) in pore size distribution for the sample with 0.25 mg ml?1 of GO is different from that prepared using 1.0 mg ml?1 GO. The superparamagnetic behavior is also lost in the latter and it exhibits a ferrimagnetic nature. The electrochemical behavior of the hybrids towards chromium ion was assessed and a novel electrode system using cyclic voltammetry for the preparation of an electrochemical sensor platform is proposed. The textural properties seem to influence the electrochemical and magnetic behavior of the hybrids.  相似文献   

12.
《Ceramics International》2017,43(9):6987-6995
CoxNi1−xFe2O4 ferrites (x=0, 0.2, 0.4, 0.4, 0.6, 0.8 and 1) were prepared by a sol-gel auto-combustion method. The samples were structurally characterized by X-ray diffractometry (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). The XRD patterns confirmed single phase formation of spinel structure. Cation distribution estimated from XRD data suggested the mixed spinel structure of ferrite. The EDX analysis was in good agreement with the nominal composition. The results of FTIR analysis indicated that the functional groups of Co-Ni spinel ferrite were formed during the combustion process. According to FE-SEM micrographs, by addition of cobalt ion the average particle size of substituted nickel ferrite was gradually became smaller from 450 nm to 280 nm. Magnetic measurement using vibrating sample magnetometer (VSM) showed an increase in saturation magnetization and coercivity by Co2+ substitution in nickel ferrite. For Co0.8Ni0.2Fe2O4 sample, Ms and Hc reaches as high as 93 emu/g and 420 Oe, respectively. The reflection loss properties of the nanocomposites were investigated in the frequency range of 8–12 GHz, using vector network analyzer (VNA). Cobalt substitution could enhance reflection loss of NiFe2O4 ferrite. The maximum reflection loss value of the Co2+ substituted Ni ferrite was ~ −26 dB (i.e. over 99% absorption) at 9.7 GHz with bandwidth of 4 GHz (RL<– 10 dB) through the entire frequency range of X-band.  相似文献   

13.
《Ceramics International》2016,42(10):12097-12104
In this work, cross-linked graphene aerogel (CL-GA) and its composite with Fe2O3 nanoparticles (NPs) were synthesized through a one-step hydrothermal procedure by using p-phenylenediamine (PPD). Structural characterizations revealed that in the preparation of the composite PPD acts as a cross-liker and provides high surface area by decreasing restacking of graphene sheets and functions as nitrogen source simultaneously. The electrochemical characteristics of the nanocomposite were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS) and Fast Fourier transform continues cyclic voltammetry (FFTCCV). The results show that cross-linked graphene aerogel/Fe2O3 (CL-GA/Fe2O3) nanocomposite displays enhanced supercapacitive performance, where it has capacitance of 445 at 1 A g−1, high energy density of 63 W h Kg−1, and 89% capacitance retention after 5000 cycles in 3 M KOH. Presence of PPD considerably improved supercapacitive performance of nanocomposite as a result it could be promising material in synthesis of efficient graphene/metal oxide-based electrode material for high performance supercapacitors.  相似文献   

14.
Elements such as B, Li and Na were doped to barium titanate, BaTiO3 in order to control dielectric dispersion. Addition of 3 mol% Li2O lowered the dispersion at frequency of 0.53 MHz, while addition of 3 mol% B2O3 or Na2O did not affect dispersion frequency. BaTiO3 doped with 0.3 mol% Li2O showed dielectric dispersion at around 2.5 GHz. An electromagnetic (EM) wave absorber using the doped BaTiO3 plate was tried to produce for millimeter frequency range. A matching layer of 0.5 mm thick ceramic plate with relative permittivity 21 was attached to it to suppress reflection of incident EM wave due to the discontinuity at the boundary between the BaTiO3 and air. The obtained EM wave absorber had reflectivity of −45 dB at 31 GHz and −25 dB at 95 GHz, respectively.  相似文献   

15.
《Ceramics International》2017,43(6):4846-4851
In this paper, La-Ni substituted barium ferrite nanoparticles were prepared by a co-precipitation method. The morphology, structure, magnetic and microwave absorption properties of samples were accomplished by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and vector network analysis. From the results evaluation, it can be seen that the magnetoplumbite structure for all of the samples have been formed and the average crystallite sizes of Ba1−xLaxFe12−xNixO19 nanoparticles within in the range of 50.9–65.5 nm. Ba0.9La0.1Fe11.9Ni0.1O19 exhibits a remarkable reflection loss of −13.5 dB at 13.05 GHz with a matching thickness of 1.5 mm. The reflection loss results indicate that Ba0.9La0.1Fe11.9Ni0.1O19 nanoparticles may be used as a potential for thin microwave absorbers.  相似文献   

16.
《Ceramics International》2016,42(12):13519-13524
We developed a one-pot in situ synthesis procedure to form nanocomposite of reduced graphene oxide (RGO) sheets anchored with 1D δ-MnO2 nanoscrolls for Li-ion batteries. The as-prepared products were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The electrochemical performance of the δ-MnO2 nanoscrolls/RGO composite was measured by galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. The results show that the δ-MnO2 nanoscrolls/RGO composite displays superior Li-ion battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1520 and 810 mAh g−1, respectively. After 50 cycles, the reversible discharge capacity is still maintained at 528 mAh g−1 at the current density of 100 mAh g−1. The excellent electrochemical performance is attributed to the unique nanostructure of the δ-MnO2 nanoscrolls/RGO composite, the high capacity of MnO2 and superior electrical conductivity of RGO.  相似文献   

17.
《Ceramics International》2016,42(15):16666-16670
NiFe2O4/reduced graphene oxide (NFO/RGO) nanocomposites were prepared by a facile one-step hydrothermal method and used as anode for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of as-prepared samples were evaluated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests. The results show that NFO/RGO-20 (20 wt%) delivers the highest reversible capacity of ~450 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability. The excellent sodium storage performance of NFO/RGO should be attributed to the synergistic effect between NFO and RGO to form conductive network structure, which offers the increased specific surface area, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

18.
Beta-manganese dioxide (β-MnO2) nanorods have been fabricated on a large scale by a simple hydrothermal process in a wild condition. Several characterizations such as XRD, SEM, TEM and FESEM have been employed. The wave absorption properties of β-MnO2/PVDF nanocomposites have been investigated. The results indicated that the β-MnO2/PVDF nanocomposites exhibit enhanced wave absorption properties. The minimum reflection loss of the β-MnO2/PVDF nanocomposite reaches − 30.1 dB (> 99.9% attenuation) at 8.16 GHz with a filler loading of 40 wt.%, and the frequency bandwidth less than –10 dB is from 7.12 to 9.20 GHz. The main microwave absorbing mechanism has been also discussed.  相似文献   

19.
《Ceramics International》2015,41(8):9602-9609
Barium hexaferrite particles were synthesized with conventional solid state reaction route. 1% boron (B2O3) was added to the initial mixture of oxides to inhibit crystal growth at lower temperatures. Magnetic (Mn2+, Co2+, Ni2+and Cu2+), non-magnetic (Zn2+) and dielectric (Ti4+) ions were replaced by one Fe3+ ion of barium hexaferrite to shift the ferromagnetic resonance frequency to low frequencies and to increase the magnetic and dielectric losses. The structural and morphological characterization of samples was done by X-ray powder diffractometer and scanning electron microscopy. Magnetic and microwave properties were determined by vibrating sample magnetometer and vector network analyzer, respectively. The maximum saturation magnetization and the highest reflection losses of −34 dB at 10 GHz, with absoption bandwidth of 1.6 GHz at −20 dB, were observed in Cu2+–Ti4+ and Zn2+–Ti4+ substituted samples. The mechanism of microwave energy dissipation is due to the impedance matching at matching thickness. It was also observed that as the sample thickness increases, the resonance frequency decreases exponentially.  相似文献   

20.
《Ceramics International》2017,43(14):11367-11375
A ternary functional composite NiFe2O4@MnO2@graphene was synthesized successfully via a facile method. The phase constitution, microstructures, morphologies and chemical compositions of the samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS). It was observed that the NiFe2O4 nanoparticles were coated by hierarchically MnO2 shells and distributed on the surface of graphene. Investigations of EM wave absorption indicated that NiFe2O4@MnO2@ graphene composite has the strongest reflection loss of −47.4 dB at 7.4 GHz at the matching thickness of 3 mm, compared to NiFe2O4 and NiFe2O4@MnO2, and its maximum absorption bandwidth (<−10 dB) is 4.3 GHz (from 5.1 to 9.4 GHz). The enhanced microwave absorption performance can be attributed to the hierarchical structure of MnO2, void space between MnO2 and graphene, and better impedance matching of ternary composite. The above results indicate that the novel hierarchical NiFe2O4@MnO2@graphene composite, with intense absorption and wide absorption bandwidth, would be a promising absorber with less EM wave interference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号