首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(9):11003-11009
A low temperature sintering method was used to avoid the relatively high sintering temperatures typically required to prepare 0.67CaTiO3–0.33LaAlO3 (CTLA) ceramics. Additionally, CeO2 was introduced into the CTLA ceramics as an oxygen-storage material to improve their microwave dielectric properties. 0.67CaTiO3–0.33LaAlO3 ceramics co-doped with B2O3–Li2O–Al2O3 and CeO2 were prepared by a conventional two-step solid-state reaction process. The sintering behavior, crystal structure, surface morphology, and microwave dielectric proprieties of the prepared ceramic samples were studied, and the reaction mechanism of CeO2 was elucidated. CTLA+0.05 wt% BLA+3 wt% CeO2 ceramics sintered at 1360 °C for 4 h exhibited the optimal microwave dielectric properties: dielectric constant (εr)=45.02, quality factor (Q×f)=43102 GHz, and temperature coefficient of resonant frequency (τf)=2.1 ppm/°C. The successful preparation of high-performance microwave dielectric ceramics provides a direction for the future development and commercialization of CTLA ceramics.  相似文献   

2.
ZnO-doped Mg2TiO4–MgTiO3–CaTiO3 microwave dielectric ceramics were successfully prepared by the reaction sintering route. The compact samples consisted of MgTiO3, Mg2TiO4 and CaTiO3, which was confirmed by X-ray diffraction and energy-dispersive spectra. ZnO efficiently lowered the sintering temperature and promoted the densification, as well as the improvements in the dielectric constant and the quality factor. At the level of ZnO?=?1 wt-%, the ceramics exhibited optimum microwave dielectric properties: a dielectric constant of 20.3, a high quality factor of 64,740 GHz (at 9.9 GHz) and a near-zero temperature coefficient of resonant frequency (–1.3 ppm/oC) after sintering at 1320oC for 4 h.  相似文献   

3.
《Ceramics International》2016,42(7):8206-8211
To investigate how grain size affects the dielectric, ferroelectric, and piezoelectric properties of Mn-modified 0.67BiFeO3–0.33BaTiO3 ceramics, we prepared samples with a wide variety of grain sizes from 4.1 μm to 0.59 μm via a conventional solid-state process that use the normal and the two-step sintering methods. Small-signal dielectric measurements show that all the samples exhibit a relaxor-like behavior and that grain size has little influence on the room-temperature dielectric permittivity. For grain sizes below 2 μm, the remanent polarization Pr and piezoelectric coefficient d33 decrease with the grain size, whereas they remain almost constant near Pr = 27 μC/cm2 and d33 = 70 pC/N in samples with grain sizes exceeding 2 μm. The mechanism underlying the observed grain size effect is discussed in terms of the electric-field-induced formation of macroscopic ferroelectric domains.  相似文献   

4.
Structural features and microwave dielectric properties of LnMO3–CaTiO3 samples (where Ln stands for La or Nd, M stands for Al or Ga) are studied. Solid solutions with the rhombic perovskite structure are shown to be formed with increasing molar concentration of LnMO3 up to ∼35% (for Ln–Nd, M–Al) or ∼40% (for Ln–La, M–Ga). Further increase of the neodymium aluminate or lanthanum gallate molar content in the solid solution up to 70% leads to formation of solid solutions with the tetragonal perovskite structure. A family of promising ceramics for application in the microwave technology with dielectric permittivity lying within the range from 43 to 48, the dielectric permittivity temperature coefficient being near to zero, and heightened quality factor (Q·f ⩾40,000 GHz) are obtained.  相似文献   

5.
In this study, 0.94Mg(1-3x/2)CexTiO3−0.06(Ca0.8Sr0.2)TiO3 (MCexT−CST, 0≤x≤0.01) composite ceramics were prepared at a low temperature of 1175°C by using the 50-nm-sized powders. The effects of Ce3+ doping on crystalline phase, microstructure, and microwave dielectric properties of MCexT−CST were studied. A main ilmenite (Mg,Ce)TiO3 phase and a minor perovskite (Ca0.8Sr0.2)TiO3 phase coexist well with the appearance of impurity MgTi2O5 phase in MCexT−CST. The dielectric properties of MCexT−CST are affected by the molecular polarizability, the impurity phase, and the Ce3+ doping. The replacement of Mg2+ by high valence Ce3+ could effectively inhibit the formation of oxygen vacancy, resulting in the enhancement of Q×f. When x = 0.005, MCexT−CST exhibits microwave dielectric properties with a moderate εr of 21.5, a high Q×f of 67 000 GHz, and a near-zero τf of −0.74 ppm/°C. The results reveal that the Ce3+ substitution is a prospective approach to optimize the microwave dielectric properties of MgTiO3-based ceramics.  相似文献   

6.
Inorganic pigments containing erbium cations and based on the spinel structure of MgFe2O4 were prepared. This type of spinel compound provides pigments of red to brown colour; an increase in the content of trivalent erbium cations results in pigments of a light brown hue. The pigments displayed good resistance to sunlight but this was reduced as the content of erbium increased. Pigments prepared using mechanoactivation possessed good resistance to sunlight over a range of erbium cation content.  相似文献   

7.
BaAl2?2xNi2xSi2O8?x (x = 0, 0.005, 0.01, 0.02, 0.03) ceramics were prepared using traditional solid phase reaction method. The microwave dielectric properties, including permittivity (εr), quality factor (Q × f), and temperature coefficient of resonant frequency (τf), were discussed based on the bond valence theory. The first-principle calculation was adopted to determine the site (Ba, Al, and Si) where doping element (Ni2+) would be inclined to occupy. The substitution of Ni2+ for Al3+ contributed to the breaking of Al-O and Si-O bonds and then facilitated the BaAl2Si2O8 (BAS) hexacelsian-celsian transformation. Moreover, this substitution could change the bond strength between cation and oxygen anion due to the variation of the bond valence, which reasonably explained the variation of εr, Q × f, and τf values. Well-sintered and completely transformed celsian ceramics can be obtained after doping with Ni2+. When x = 0.01, compact BaAl1.98Ni0.02Si2O7.99 ceramic exhibited highly promising microwave dielectric properties: εr = 6.89, Q × f = 53, 287 GHz and τf = -25.31 × 10?6 /°C.  相似文献   

8.
(1−x)La(Mg0.5Ti0.5)O3 (LMT)–xCaTiO3 (CT) [0<x<1] ceramics were prepared from powder obtained by a nonconventional chemical route based on the Pechini method. The crystal structure of the microwave dielectric ceramics has been refined by Rietveld method using X-ray powder diffraction data. LMT and CT were found to form a solid solution over the whole compositional range. The 0.9LMT–0.1CT composition was refined using P21/n space group, which allows taking into account B-site ordering. The compounds having x⩾0.3 were found to be disordered and were refined using Pbnm space group. Microstructure evolution was also analysed. Dielectric characterization at microwave frequencies was performed on the LMT–CT ceramics. The permittivity and the temperature coefficient of resonant frequency of the solid solutions showed a non-linear variation with composition. The quality factor demonstrates a considerable decrease with the increase of CT content.  相似文献   

9.
《Ceramics International》2022,48(22):32827-32836
To investigate the crystal structure, electrical properties, and magnetic properties of Ca–Sn co-doped Y3-xCaxFe5-xSnxO12 (x = 0.00–0.25 in steps of 0.05), solid-state reaction experiments, first principles calculations, and complex crystal bonding theoretical calculations were performed. The relative permittivity (εr) is strongly correlated with the average bond ionicity when Ca2+ is added. Furthermore, appropriate Sn4+ substitution significantly lowers the dielectric loss (tanδε) associated with the lattice energy. The right amount of Ca–Sn co-doping can change the saturation magnetization (4πMS) and improve the microscopic morphology of YIG, lowering the ferromagnetic resonance linewidth (ΔH) of YIG. The optimized microwave dielectric and magnetic properties are as follows: εr = 14.7, tanδε = 4.15 × 10?4, 4πMS = 1680 G, and ΔH = 53 Oe for Y2.8Ca0.2Fe4.8Sn0.2O12 sintered for 6 h at 1425 °C. Based on this material, a simple 3D model of a strip-line circulator with an insertion loss of less than 0.3 dB at each port and isolation greater than 20 dB in the 10–12 GHz range was developed, indicating the potential of the material for microwave high-frequency components such as circulators.  相似文献   

10.
《Ceramics International》2020,46(5):5753-5756
MgO ceramics have good microwave dielectric properties, but the high sintering temperatures limit its application. The effects of TiO2 additive on the phase composition and microwave dielectric properties of MgO ceramics with 4mol%LiF were investigated by solid state reaction method. TiO2 and MgO form Mg2TiO4 in a magnesium-rich environment with 4mol%LiF at about 900 °C, which as a solid solution or second phase had a huge impact on MgO ceramic with 4mol % LiF. When the content of TiO2 less than 2mol %, Mg2TiO4 as a solid solution in MgO ceramics, which made the grain of MgO larger. When the content of TiO2 more than 2mol %, Mg2TiO4 as a second phase in MgO ceramics, which made the microwave dielectric properties of MgO ceramics bad. Typically, the MgO-4mol%LiF-0.5mol%TiO2 ceramic sintered at 1075 °C for 6 h acquired the best dielectric properties: εr = 9.7, Qf = 617,000 GHz and τf = −59.49 ppm/°C.  相似文献   

11.
The thermoelectric properties of Ca3Co4O9 were optimized by the substitution of La3+ for Ca2+ in Ca3Co4O9. The La3+ substitution significantly enhanced the thermoelectric power factor and reduced the lattice thermal conductivity. The lattice thermal conductivities at 800 °C for x = 0 and 0.3 samples were 1.80 and 1.34 Wm−1 K−1, respectively. The reduced thermal conductivity was mainly attributed to mass and strain field fluctuations in the crystal lattice. Ca2.7La0.3Co4O9+δ showed the largest dimensionless figure-of-merit (0.282 at 800 °C) by combining high power factor and the lowest lattice thermal conductivity. This work demonstrates that the La3+ substitution is a highly effective approach for improving high-temperature thermoelectric properties.  相似文献   

12.
《Ceramics International》2023,49(1):188-193
The SnxTa0.025Ti0.975-xO2 (x%Sn(TTO)) ceramics with x = 2.5–10% were prepared using a standard mixed-oxide method and sintered at 1450 °C for 3 h to achieve a dense microstructure. The effects of the isovalent–Sn4+ doping concentration on the crystal structure, microstructure, giant dielectric behavior, and electrical properties were systematically investigated. Continuously enlarged lattice parameters and bond lengths with a single rutile–TiO2 phase were observed as x% increased. The mean grain size was slightly reduced (~17.3–14.6 μm) due to an increased oxygen vacancy and the solute drag effect. The dielectric permittivity (ε′) decreased with increasing x%, whereas the loss tangent (tanδ) was remarkably reduced. The semiconducting grain resistance of the x%Sn(TTO) ceramics remained unchanged owing to the same Ta5+ donor concentration. The insulating grain boundary (GB) resistance was extremely increased by more than two orders of magnitude when x% increased from 2.5 to 5.0%, leading to the significantly improved giant dielectric properties. The optimized low tanδ~0.02 and high ε′~104 with temperature coefficient less than ±15% in the range of -60–210 °C were reasonably described by the internal barrier layer capacitor model. Improved dielectric properties can be obtained by engineering GB by varying the Sn4+–isovalent doping concentration. This study provides an important approach for improving the dielectric properties of co–doped TiO2 without the creation of complex defect clusters inside the grains.  相似文献   

13.
The effect of WO3 addition on the phase formation, the microstructures and the microwave dielectric properties of 1 wt% ZnO doped 0.95MgTiO3–0.05CaTiO3 ceramics system were investigated. Formation of second phase MgTi2O5 could be effectively restrained through the addition of WO3, but should be in right amount. WO3 as additives could not only effectively lower the sintering temperature of the ceramics to 1310 °C, but also promote the densification. A dielectric constant εr of 20.02, a Q×f value of 62,000 (at 7 GHz), and a τf value of −5.1 ppm/°C were obtained for 1 wt% ZnO doped 0.95MgTiO3–0.05CaTiO3 ceramics with 0.5 wt% WO3 addition sintered at 1310 °C.  相似文献   

14.
BaLi1+xF3+x (x = 0–0.01) were successfully mechanosynthesized by a simple ball-milling process. The effects of excessive LiF and sintering method and/or annealing atmosphere on its sintering behavior, microstructure, and microwave dielectric properties have been investigated in this paper. The mechanosynthesized powder can be densified with relative densities of ∼95 % after sintering at 750–800 °C/2 h in N2. The obtained ceramics exhibit excellent optimized microwave dielectric properties with εr of ∼11.46 ± 0.06, Q×f values of 83175 ± 1839 GHz and τf of ∼ − 70 ± 3 ppm/°C at the x = 0.006 composition. Its Q×f value could be improved to 94603 ± 2037 GHz) by post-annealing in N2 after post annealing at 700 °C/2 h. The Q×f value could be further improved to (120,098 ± 2344 GHz) by hot-pressed sintering (HPS). Sintering in the ambient atmosphere or O2 leads to lower Q×f values than those of the counterparts sintered in N2 due to the introduction of F-vacancies by oxidation, while little variation in εr andτf.  相似文献   

15.
This research was conducted to study the effect of ZnO nano-particulate modification on properties of Pb(Zr0.52Ti0.48)O3 (PZT)–(Bi3.25La0.75)Ti3O12 (BLT) ceramics prepared by a mixed-oxide solid-state sintering method. ZnO nano-particulate was added into PZT–BLT ceramics to obtain PZT–BLT/xZnO (x = 0, 0.1, 0.5 and 1.0 wt%). The PZT–BLT/xZnO ceramics were investigated in terms of phase, microstructure, physical, electrical, and mechanical properties. Tetragonality of PZT–BLT crystal structure tended to increase with increasing ZnO content. ZnO addition obviously increased the density of PZT–BLT ceramics while the grain size slightly decreased. Intergranular fracture mode was observed for pure PZT–BLT ceramic while the samples contained ZnO nano-particles showed a mixed-mode inter-/trans-granular fracture. Addition of ZnO also affected hardness and fracture toughness values. Addition of ZnO nano-particulate into PZT–BLT ceramics was found to improve room temperature dielectric constant but did not have a significant effect on ferroelectric properties. These observed results were expected to be caused by the behaviors similar to a donor-doped system.  相似文献   

16.
WO3(0–6 mol%)-doped 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 lead-free ceramics were synthesized by conventional solid-state reaction. The effect of WO3 addition on the structure and electrical properties were investigated. The result revealed that a small amount of WO3 (≤1 mol%) can diffuse into the lattice and does not significantly affect the phase structure, however, more addition will result in distortion and enlargement of the unit cells. The maximum permittivity temperature (Tm) is suppressed dramatically as the dopant increasing, while the depolarization temperature (Td) fall to the minimum with 1 mol% WO3 additive. The remanent polarization (Pr) was enhanced and coercive field (Ec) was reduced by doping with WO3. The strain shows the largest value for 1 mol% doped sample, which is due to a field-induced antiferroelectric–ferroelectric phase transition.  相似文献   

17.
In this paper, effect of tungsten doping on the dielectric property of the Pb(Zn1/3Nb2/3)O3–BaTiO3–PbTiO3 system around morphotropic phase boundary(MPB) composition is presented. Samples were prepared according to the formula Pb0.85−xBa0.15[(Zn1/3Nb2/3)0.7Ti0.3]1−xWxO3 assuming the compensation for W is achieved via the appearance of the lead vacancies. X-ray diffraction results show that a nearly complete perovskite phase was maintained as W was progressively added up to 5 wt.%. Introduction of W stabilizes the tetragonal phase against the rhombohedral one, resulting in the displacement of MPB composition region towards relaxor end. Moreover, lattice distortion of the tetragonal phase is enlarged, that of the rhombohedral phase is lowered. W- doping leads to an increase in the dielectric permittivity maximum and a decrease in the phase transition temperature (Tm). The frequency dispersion of Tm is succesively weakened as W ions are gradually incorporated, reflecting the strengthened couplings among ferroactive oxygen octahedra. A maximum on the degree of diffuse phase transition is observed at 1 mol% WO3, which can be interpreted in terms of competing effects of chemical inhomogeneity and ferroelectric couplings. W-doping also induces an increase in the tendency towards Curie–Weiss behavior above Tm, which is associated with the growth of ferroelectric domains.  相似文献   

18.
《Ceramics International》2016,42(7):7943-7949
This paper reports the investigation of the performance of Li2O–B2O3–SiO2 (LBS) glass as a sintering aid to lower the sintering temperature of BaO–0.15ZnO–4TiO2 (BZT) ceramics, as well as the detailed study on the sintering behavior, phase evolution, microstructure and microwave dielectric properties of the resulting BZT ceramics. The addition of LBS glass significantly lowers the sintering temperature of the BZT ceramics from 1150 °C to 875–925 °C. Small amount of LBS glass promotes the densification of BZT ceramic and improves the dielectric properties. However, excessive LBS addition leads to the precipitation of glass phase and growth of abnormal grain, deteriorating the dielectric properties of the BZT ceramic. The BZT ceramic with 5 wt% LBS addition sintered at 900 °C shows excellent microwave dielectric properties: εr=27.88, Q×f=14,795 GHz.  相似文献   

19.
《Ceramics International》2015,41(6):7489-7495
MgO-doped 0.97BaTiO3–0.03BiYO3 (0.97BT–0.03BY) polycrystalline ceramics were prepared by the solid-state sintering method. Then the structural, dielectric and resistant properties were investigated as functions of MgO addition. Microstructure was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). The results show that Bi3+, Y3+ and Mg2+ ions exhibit nonuniform distribution behavior in BT–BY ceramics, demonstrating the existence of a “core–shell” structure, which plays important roles in the capacitance-temperature characteristics, where 0.97BT–0.03BY with the addition 2.2–2.8 at% MgO meets the Electronic Industries Association (EIA) X8R (−55 to 150 °C, ΔC/C25 °C=±15% or less) specification. Moreover, the fine-grained samples with core–shell structure show much higher bulk resistance than the coarse-grained samples over the studied temperature range, which is attributed to the higher proportion of grain boundaries and the lower concentration of the effective acceptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号