首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Ceramics International》2016,42(12):13824-13829
In this work, (1−x)(K0.52Na0.48)Nb0.95Sb0.05O3−xBi0.5(Na0.8K0.2)0.5ZrO3 [abbreviated as (1−x)KNNS−xBNKZ, x=0–0.06] lead-free ceramics were fabricated using solid-state reaction method. The effects of BNKZ contents on the phase structure, piezoelectric and ferroelectric properties were investigated. The phase boundaries including orthorhombic-tetragonal (O-T) and rhombohedral-tetragonal (R-T) multiphase coexistence were identified by XRD patterns and temperature-dependent dielectric constant by adding different content of BNKZ. A giant field induced strain (~0.25%) along with converse piezoelectric coefficient d33* (~629.4 pm/V) and enhanced ferroelectricity Pr (~38 μC/cm2) were obtained when x=0.02, while the specimen with x=0.03 presented the optimal piezoelectric coefficient d33 of 215 pC/N, due to the O-T or R-T phase coexistence near room temperature respectively. These results show that the introduction of Bi0.5(Na0.8K0.2)0.5ZrO3 is a very effective way to improve the electrical properties of (K0.52Na0.48)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics.  相似文献   

2.
This study reports on the synthesis of polycrystalline samples of (Na0.5Bi0.5)(1−x)BaxTi(1−x)(Fe0.5Nb0.5)xO3 with x=0, 0.025, 0.05, 0.075, and 0.1, using the solid-state reaction technique. It investigates the effects of the substitution of sodium and bismuth by barium in the A site and of titanium by iron and niobium in the B site with regard to the free NBT symmetry and dielectric properties were investigated. The crystallographic and dielectric properties were also investigated. The diffractograms showed that all the samples had a single phase character. The increase of ceramic lattice parameters induced an increase in the size of the perovskite lattice. This increase was caused by the increase of the radii of the A and B sites. Room temperature X-ray data revealed that the ceramic structures underwent a gradual distortion with the increase in the composition fraction. Dielectric permittivity was measured in the temperature range of 120–780 K with frequencies ranging from 1 to 103 KHz. Three anomalies, namely Td, T1 and Tm, were detected and noted to coexist at lower Td and Tm as the rate of substitutions increased. All the samples exhibited a diffuse phase transition and implied better dielectric permittivity maxima values at temperatures approaching room temperature, since the substitution rate values increased more than that of pure NBT. A relaxor behavior with ΔTm=14 K and ε'rmax=3876 at 1 kHz was observed for (Na0.5Bi0.5)0.9Ba0.1Ti0.9(Fe0.5Nb0.5)0.1O3 ceramic.  相似文献   

3.
Textured (Na,K)0.5Bi0.5TiO3 ceramics were fabricated by reactive-templated grain growth in combination with tape casting. The effects of sintering conditions on the grain orientation and the piezoelectric properties of the textured (Na,K)0.5Bi0.5TiO3 ceramics were investigated. The results show that the textured ceramics have microstructure with plated-like grains aligning in the direction parallel to the casting plane. The ceramics exhibit {h 0 0} preferred orientation and the degree of orientation is larger than 0.7. The degree of grain orientation increases with the increasing sintering temperature. The textured ceramics show anisotropy dielectric and piezoelectric properties in the directions of parallel and perpendicular to the casting plane. The ceramics in the perpendicular direction exhibit better dielectric and piezoelectric properties than those of the nontextured ceramics with the same composition. The optimized sintering temperature is 1150 °C where the maximum d33 of 134 pC/N parallel to casting plane, the maximum k31 of 0.31, and the maximum Qm of 154 in perpendicular direction were obtained.  相似文献   

4.
For perovskite Pb-based ceramics, outstanding hardening piezoelectric properties can be easily induced by acceptor dopings of Fe, Mn or Cu, but in this work, completely different hardening effects are observed in Fe/Mn/Cu-doped K0.5Na0.5NbO3 ceramics. Pure K0.5Na0.5NbO3 exhibits a well-saturated single P-E loop, giving low Qm of 72. Fe2O3-doped ceramic exhibits the combined effects of dominant donor and slight acceptor, giving a slightly slanted single P-E loop and relatively low Qm of 156. For MnO2-doped ceramic, moderate hardening properties with a slightly pinched P-E loop and relatively high Qm of 370 are exhibited. Unlike Fe2O3 and MnO2-doped ceramics, a double P-E loop and superhigh Qm of 1965 are obtained in CuO-doped ceramic. The defect structure and corresponding microscopic mechanisms in the ceramics have been systematically investigated. Our study shows that defect characteristics should be responsible for distinct hardening properties in Fe, Mn and Cu-doped K0.5Na0.5NbO3 materials.  相似文献   

5.
Effect of excess CuO additive on the sintering behavior and piezoelectric properties of Bi0.5(Na82K0.18)0.5TiO3 ceramics was investigated. The addition of small amount of excess CuO as low as 1 mol% was quite effective to lower the sintering temperature (Ts) of BNKT ceramics down to 975 °C while their piezoelectric properties were degraded by Cu doping. However, the electric field-induced strain was markedly enhanced by further addition of Nb2O5 with CuO without elevating Ts. The normalized strain Smax/Emax of 427 pm/V was obtained with a specimen sintered with 0.02 mol CuO and 0.03 mol Nb2O5 in excess.  相似文献   

6.
《Ceramics International》2016,42(3):4274-4284
Bi0.5(Na0.65K0.35)0.5TiO3 (BNKT) and Mn-modified Bi0.5(Na0.65K0.35)0.5(MnxTi1−x)O3 (BNKMT-103x), (x=0.0–0.5%) ferroelectric ceramics were synthesized by solid-state reaction method. Optimization of calcination temperature in Mn-doped ceramics was carried out for the removal of secondary phases observed in XRD analysis. BNKMT ceramics sintered at 1090 °C showed enhanced dielectric, piezoelectric and ferroelectric properties in comparison to pure BNKT. The average grain size was found to increase from 0.35 μm in BNKT to 0.52 μm in Bi0.5(Na0.65K0.35)0.5(Mn0.0025Ti0.9975)O3 (BNKMT-2.5) ceramics. The dielectric permittivity maximum temperature (Tm) was increased to a maximum of 345 °C with Mn-modification. AC conductivity analysis was performed as a function of temperature and frequency to investigate the conduction behavior and determine activation energies. Significant high value of piezoelectric charge coefficient (d33=176 pC/N) was achieved in BNKMT 2.5 ceramics. Improved temperature stability of ferroelectric behavior was observed in the temperature dependent P–E hysteresis loops as a result of Mn-incorporation. The fatigue free nature along with enhanced dielectric and ferroelectric properties make BNKMT-2.5 ceramic a promising candidate for replacing lead based ceramics in device applications.  相似文献   

7.
The structure and electrical properties of perovskite layer structured (PLS) (1?x)Sr2Nb2O7x(Na0.5Bi0.5)TiO3 (SNO‐NBT) prepared by solid‐state reaction method are investigated. The addition of NBT is beneficial to speed up mass transfer and particle rearrangement during sintering, leading to better sinterability and higher bulk density up to 96.8%. The solid solution limit x in the SNO‐NBT system is below 0.03, over which Ti4+ is preferable to aggregate and results in the generation of secondary phase. After the modification by NBT, all SNO‐NBT ceramics have a Curie temperature Tc up to over 1300°C and piezoelectric constant d33 about 1.0 pC/N. The breakthrough of piezoelectricity can mainly be attributed to rotation and distortion of oxygen octahedron as well as higher poling electric field resulting from the improved bulk density. This study not only demonstrates how to improve piezoelectricity by NBT addition, but also opens up a new direction to design PLS piezoceramics by introducing appropriate second phase.  相似文献   

8.
In this study, the phase structure, microstructure and dielectric properties of Bi0.5(Na0.78K0.22)0.5(Ti1-xNbx)O3 lead-free ceramics prepared by traditional solid phase sintering method were studied. The second phase pyrochlore bismuth titanate (Bi2Ti2O7) was produced in the system after introduction of Nb5+. The dielectric constant of the sample (x = 0.03) sintered at 1130 °C at room temperature reached a maximum of 1841, and the dielectric loss was 0.045 minimum. It had been found that the K+ and Nb5+ co-doped Bi0.5Na0.5TiO3 (BNT) lead-free ceramics exhibited outstanding dielectric-temperature stability within 100–400 °C with Tcc ≤±15%. Result of this research provides a valuable reference for application of BNT based capacitors in high temperature field.  相似文献   

9.
In this work, we have mainly reported the effect of lanthanum substitution on structural, dielectric, impedance and transport properties of strontium iron niobate (i.e., Sr1-xLax(Fe0.5Nb0.5)1-x/4O3 (x = 0, 0.05, 0.1, 0.15, 0.2)). The materials were synthesized using standard ceramic technology. The preliminary structural analysis was done by using the room temperature X-ray diffraction data. The samples of higher concentrations (x = 0.15 and x = 0.20) show the development of an additional phase (i.e., LaNbO4 and Sr3La4O9). Studies of frequency and temperature dependence of dielectric parameters exhibit an anomaly and relaxor behavior in the compounds. The electrical impedance and modulus analysis of frequency and temperature-dependent data show the contributions of grains and grain boundaries in the resistive and capacitive properties of the compounds. The study of transport properties of AC conductivity has provided the conduction and relaxation mechanism. The substitution of La3+ has significantly changed the dielectric constant, tangent loss, and transport properties of the material.  相似文献   

10.
The paper reports highest obtained dielectric constant for Ni-doped Lead Zirconate Titanate [PZT, Pb(Zr0.52Ti0.48)O3] ceramics. The Ni-doped PZT ceramic pellets were prepared via conventional solid-state reaction method with Ni content chosen in the range 0–20?at%. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were employed to investigate the crystal structure of the prepared ceramics. The X-ray diffraction analysis indicated that the ceramic pellets had crystallized into tetragonal perovskite structure. A minute displacement of XRD peaks was detected in the diffraction spectra of Ni-doped PZT ceramic samples which when examined by size-strain plot (SSP) method revealed presence of homogenous strain that decreased with increase in concentration of Ni. In FTIR the maximum absorption at 597?cm?1, 608?cm?1, 611?cm?1, 605 and 613?cm?1 for Ni?=?0, 5, 10, 15 and 20?at%, respectively, confirmed the formation of perovskite structure in all the compositions and the slight shift suggests decrease in cell size on doping. The values of dielectric constant (ε′) & tanδ as a function of frequency and temperature were measured for the prepared ceramics and it revealed highest ever reported dielectric constant for Ni - doped PZT with Ni?=?5?at%. The dielectric variation with temperature exhibited a diffused type ferroelectric–paraelectric phase transition for the doped samples. Also, the maximum dielectric constant value (εmax) decreased while the phase transition temperature increased with increase in doping concentration of Ni. The estimated activation energy of different compositions was found to increase from 0.057 to 0.068?eV for x?=?0.00 to x?=?0.20 in ferroelectric phase. The piezoelectric, ferroelectric and magnetic properties were also investigated.  相似文献   

11.
The effect of B-site compositional homogeneity on microstructure, piezoelectric properties and dielectric behaviour of lead-free piezoelectric ceramics, (K0.44Na0.52Li0.04) (Nb0.86Ta0.10Sb0.04)O3, is investigated. The B-site compositional homogeneity is evaluated by using an intermediate precursor obtained by solid state reaction between adequate amounts of Nb2O5, Ta2O5 and Sb2O5, calcined at 1350 °C and attrition milled. The B-site precursor powder is mixed with alkaline carbonates to synthesize perovskite powders and, finally, sinter piezoceramics. X-ray diffraction and Raman spectroscopy reveal the formation of a perovskite phase, although tetragonal tungsten-bronze structure is detected as minor secondary phase. Ceramics processed by using B-site precursor show different crystalline structure as a function of sintering conditions or K/Na ratio. The B-site precursor route produces thus lower piezoelectric properties, but the control of alkali volatilization by using sintering powder bed resulted in a relevant decrease of dielectric losses that favours the d33 enhancement.  相似文献   

12.
A series of novel lead-free energy storage ceramics, (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 (BF-BT-xBBN), were fabricated by traditional solid-state reaction, where bismuth layer-structured BaBiNb2O9 was incorporated into perovskite-structured BiFeO3–BaTiO3 ceramic as an additive. The addition of BaBi2Nb2O9 increased the relaxor behavior and breakdown strength of BF-BT ceramics due to the formation of polar nanoregionals (PNRs), inducing enhanced energy storage performance. The composite ceramics, with x = 0.08, showed a large recoverable energy density (Wrec) of 3.08 J/cm3 and an outstanding energy storage efficiency (η) of 85.57% under an applied electric field of 230 kV/cm. Moreover, the composite ceramics exhibited excellent thermal stability and high stability toward different frequencies in a temperature range of 20–100 °C and a frequency range of 0.1–1500 Hz. These results demonstrate great potential of novel BF-BT-xBBN composite ceramics for next-generation energy storage applications.  相似文献   

13.
Relaxor ferroelectric behaviour was observed in perovskite layered structure (PLS) (Ca0.5Sr0.5Ba0.5Pb0.5)Nb2O7 (CSBPN) ceramics engineered using the high entropy approach. The CSBPN ceramics were sintered at 1350 °C and are single-phase with an orthorhombic structure (Cmcm space group) at room temperature. Their relaxor ferroelectric behaviour is characterized by a broad and frequency-dependent permittivity maximum and a current peak around zero electric field in the hysteresis loop. The presence of polar nanoregions is supported by piezoresponse force microscopy images. The value of the relative permittivity ?′ = 130 at 1 kHz and room temperature is much larger than that for conventional PLS ceramics Sr2Nb2O7 (?′ = 42) and Ca2Nb2O7 (?′ = 38). This can be attributed to the presence of polar nanoregions and the lattice distortion effect in high entropy materials. The appealing dielectric and relaxor behaviour of CSBPN ceramics confirms the efficacy of the high entropy approach to obtain improved properties.  相似文献   

14.
The piezoelectric properties of lead-free Ba0.88Ca0.12Zr0.12Ti0.88O3 (BCZT) ceramics were greatly optimized by doping Co ions using a CoO powder. The role of Co2+ and Co3+ in enhancing the piezoelectric properties and the relationship between the content ratio Co3+/Co2+ and piezoelectric performance were studied. The X-ray diffraction patterns of all samples indicated that crystalline phases were a BCZT-based single perovskite structure regardless of the Co ion content. The phase transition temperature and lattice distortion degree were related to the Co ion content and the content ratio Co3+/Co2+ because Co2+ resulted in higher oxygen vacancy generation, whereas Co3+ induced larger lattice shrinkage. The ceramic containing 0.10 wt% of Co ion showed the best piezoelectric and dielectric performance with the highest piezoelectric constant d33 ~ 490 p.m./V at room temperature and the highest Curie temperature Tc of 110 °C, which increased by 29% and 16%, respectively. In this case, the content ratio Co3+/Co2+ reached the maximum value of 0.86. The high piezoelectric properties and phase stability of BCZT ceramics by doping Co ions make these ceramics promising piezoelectric materials for practical applications.  相似文献   

15.
钛酸铋钠钾锂无铅陶瓷的柠檬酸制备技术   总被引:7,自引:2,他引:7  
以钠、钾、锂的碳酸盐为原料,采用柠檬酸盐-凝胶法制备了Biol5(Na1-x-y,LixKy)0.5TiO3无铅压电陶瓷,研究了影响凝胶合成的各种工艺条件,利用TG-DTA,SEM,XRD,纳米粒度分析等技术分析了凝胶预烧温度及预烧粉体的粒度分布。研究结果表明:柠檬酸与金属离子的物质的量比、溶液浓度、pH是影响前驱液与凝胶形成的主要因素;用柠檬酸盐一凝胶法合成的Bi0.5(Na1-x-y,LixKy)TiO3粉体粒度细小均匀,合成温度低;陶瓷的压电常数d33可达138pC/N,其平面机电耦合系数kp为0.30。  相似文献   

16.
The piezoelectric strain and resonance performance of 0.37BiScO3-0.6PbTiO3-0.03Pb(Mn1/3Nb2/3)O3 (BS-PT-PMN-xFe) ceramics with different amounts of Fe content addition were investigated from room temperature to 200 °C. Both the piezoelectric strain and resonance performance are improved by Fe addition in wide temperature range. Piezoelectric strain of BS-PT-PMN-xFe with 1 mol% Fe is 0.23%, which is comparable to that of BiScO3-PbTiO3 (BS-PT) ceramics, while the strain hysteresis is only one-third. At 200 °C, the high-field strain coefficient of BS-PT-PMN-Fe with 1 mol% Fe is as large as 700 pm/V. Variation of piezoelectric strain and hysteresis is clearly reducing by Fe addition. The maximum vibration velocity is enhanced up to approximately 1 m/s in 2 mol% Fe-modified BS-PT-PMnN-xFe ceramics, and the vibration velocity is stable from room temperature to 200 °C when the electric voltage magnitude was below 60 Vpp. These results indicate that BS-PT-PMN-xFe ceramics are potential candidates for high-temperature piezoelectric actuator application.  相似文献   

17.
Lead-free Na0.5K0.5NbO3 (NKN) and Na0.475K0.475Li0.05NbO3 (NKLN) ceramics doped with CuO were prepared by the mixed oxide route. The powders were calcined at 850-930 °C and sintered at 850-1100 °C. Small additions of CuO reduced the sintering temperature and increased the density to 96% theoretical. Cu first appears to enter the A site then the B site. In NKLN the orthorhombic-tetragonal and tetragonal-cubic phase transitions are approximately 150 °C lower and 50 °C higher, respectively than in NKN. With increasing addition of Cu to NKN and NKLN the remanent polarization (Pr) increased and coercive field (Ec) decreased. NKLN prepared with 0.4 wt% CuO exhibited a saturation polarization (Psat) of 30 μC/cm2, remanent polarization (Pr) of 27 μC/cm2 and coercive field (Ec) of 1.0 kV/mm. CuO caused the NKLN ceramics to harden considerably; the mechanical quality factor (Qm) increased from 50 to 260, d33 ∼ 285 and piezoelectric coupling factors were >0.4.  相似文献   

18.
A series of lead-free (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Y0.5Nb0.5)xO3 (for 0 ≤ x ≤ 0.03) perovskite ceramics were fabricated using a solid-state reaction technique. The effects of (Y0.5Nb0.5)4+ ions doping on phase structure, piezoelectric properties, AC impedance, and fatigue resistance were systematically studied. Crystal structure as a function of the composition revealed a single perovskite lattice structure with dense micromorphology. The transition temperature of the non-ergodic and ergodic relaxor ferroelectric phase shifted to near ambient temperature with increasing composition, which was related to the destruction of the long-range ordered ferroelectric domains. Hence, the transformation of ferroelectric-to-relaxor phase was easier under applied electric field at room temperature. The ceramic for x = 0.01 composition attained a large unipolar strain of ~ 0.452% with a corresponding normalized strain (d33*) of ~ 603 pm/V under applied 75 kV/cm field. Besides, the excellent fatigue resistance of the sample was obtained after 105 switching cycles under 70 kV/cm. These phenomena demonstrated that (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Y0.5Nb0.5)xO3 ceramics might be suitable for a wide range of electronic equipment applications such as actuators and sensors.  相似文献   

19.
(1?x)BaTiO3xBi(Zn0.5Zr0.5)O3 [(1?x)BT–xBZZ, 0.01≤x≤0.09] lead-free piezoelectric ceramics were prepared by solid-state reaction method. The effects of Bi(Zn0.5Zr0.5)O3 addition on the crystal structure and electric properties of the BaTiO3 ceramics have been investigated. X-ray diffraction demonstrated that the samples exhibited a tetragonal to pseudocubic phase transition. The lattice parameters were found to increase with increasing the amount of BZZ content. Dielectric measurements revealed that the Curie temperature (Tc) shifted to higher temperature with increasing x. Furthermore, the ceramic with x=0.01 exhibited relatively good electrical properties with d33=195 pC/N, kp=17.7%, Pr=14.5 lC/cm2, and Ec=11.13 kV/cm.  相似文献   

20.
《Ceramics International》2023,49(3):4119-4128
Li2CO3 is a promising additive to reduce the sintering temperature for (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 (BCZT) ceramics, however, the solubility of Li2CO3 in water and the high volatility of Li2O at elevated temperatures make the processing and densification of BCZT-Li2CO3 ceramics (known as BCZT-L) challenging. In our work, an optimized processing route was developed to obtain dense and flat BCZT-L ceramics made with 0–10 mol% of Li2CO3 and involving sintering at 1300 °C–1400 °C. The chemical and structural evolution of BCZT-L ceramics during sintering with and without a BCZT powder bed are comprehensively documented and the distribution of Li in the matrix has been observed through TOF-SIMS to explain the effects of Li doping on the piezoelectric properties. The d33 and kp of BCZT-L initially increased with Li content, but then decreased with excess Li. The decreased d33 and kp with excess Li is associated with Li aggregation in the BCZT matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号