首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The nanostructured La2Zr2O7 (LZ) feedstock with high density, suitable size distribution and nearly spherical morphology which can be used for plasma spraying was prepared by spray drying in this study. The spray drying process was discussed. In addition, the formation mechanism of feedstock with hollow shell structure was discussed by finite element method in this paper. The double ceramic layer (DCL) LZ/YSZ (yttria stabilized zirconia) thermal barrier coatings were prepared using the as prepared LZ feedstock. The average grain size computed by Scherrer formulation, the observation of powder size by Transmission Electron Microscope (TEM) and “single splat” deposition experiment indicate that the as prepared LZ feedstock is nanostructured feedstock.  相似文献   

2.
Pure pyrochlore Lanthanum zirconate (LZ) was synthesized by co-ions complexation method (CCM) at 1300 °C, which is 300 °C lower than that by solid-state method (SSM). At 1450 °C, the LZ prepared by CCM possessed lower thermal conductivity (1.15 W/m K) than that obtained by SSM (1.99 W/m K). This significant decrease may be caused by the different grain size, which is 300 nm and 2.5 μm synthesized by CCM and SSM, respectively. LZ precursor was belt-shaped and the belt shorten and the grain grown with the temperature increasing. Fourier transform infrared spectroscopy suggested the solidification in CCM forms from the complexation between La3+, Zr4+ and CH3COO, which is the key for solidification. Compared to SSM, CCM is a lower temperature and simpler technology to synthesize nano-size LZ and other rare-earth oxides.  相似文献   

3.
The single-ceramic-layer (SCL) 8YSZ (conventional and nanostructured 8YSZ) and double-ceramic-layer (DCL) La2Zr2O7 (LZ)/8YSZ thermal barrier coatings (TBCs) were fabricated by plasma spraying on nickel-based superalloy substrates with NiCrAlY as the bond coat. The thermal shock behavior of the three as-sprayed TBCs at 1000 °C and 1200 °C was investigated. The results indicate that the thermal cycling lifetime of LZ/8YSZ TBCs is longer than that of SCL 8YSZ TBCs due to the fact that the DCL LZ/8YSZ TBCs further enhance the thermal insulation effect, improve the sintering resistance ability and relieve the thermal mismatch between the ceramic layer and the metallic layer at high temperature. The nanostructured 8YSZ has higher thermal shock resistance ability than that of the conventional 8YSZ TBC which is attributed to the lower tensile stress in plane and higher fracture toughness of the nanostructured 8YSZ layer. The pre-existed cracks in the surface propagate toward the interface vertically under the thermal activation. The nucleation and growth of the horizontal crack along the interface eventually lead to the failure of the coating. The crack propagation modes have been established, and the failure patterns of the three as-sprayed coatings during thermal shock have been discussed in detail.  相似文献   

4.
The hydrogen desorption properties and kinetics of MgH2–VO2 composite prepared by mechanical milling of MgH2 and VO2 have been investigated. Structural characterization of produced nanocomposite was done by X-ray powder diffraction (XRD), particle size analysis and scanning electron microscopy (SEM). The structure and morphology of the composite have been correlated with hydrogen desorption properties investigated by differential thermal analysis (DTA). It has been shown that short mechanical milling of nanostructured VO2 and MgH2 leads to decrease of hydrogen desorption temperature of MgH2 by 80 K. The mechanism of desorption has been changed from phase boundary reaction, spherical symmetry for untreated MgH2 to phase boundary reaction, cylindrical symmetry for the composite material. The activation energy for desorption has been reduced by adding VO2 ceramics as a catalyst.  相似文献   

5.
High‐temperature time‐of‐flight neutron diffraction experiments were performed on cubic yttria‐stabilized zirconia (YSZ, 10 mol% YO1.5) and lanthanum zirconate (LZ) prepared by laser melting. Three spheroids of each composition were aerodynamically levitated and rotated in argon flow and heated with a CO2 laser. Unit cell, positional and atomic displacement parameters were obtained by Rietveld analysis. Below ~1650°C the mean thermal expansion coefficient (TEC) for YSZ is higher than for LZ (13 ± 1 vs. 10.3 ± 0.6) × 10?6/K. From ~1650°C to the onset of melting of LZ at ~2250°C, TEC for YSZ and LZ are similar and within (7 ± 2) × 10?6/K. LZ retains the pyrochlore structure up to the melting temperature with Zr coordination becoming closer to perfectly octahedral. Congruently melting LZ is La deficient. The occurrence of thermal disordering of oxygen sublattice (Bredig transition) in defect fluorite structure was deduced from the rise in YSZ TEC to ~25 × 10?6/K at 2350°C–2550°C with oxygen displacement parameters (Uiso) reaching 0.1 Å2, similar to behavior observed in UO2. Acquisition of powder‐like high‐temperature neutron diffraction data from solid‐levitated samples is feasible and possible improvements are outlined. This methodology should be applicable to a wide range of materials for high‐temperature applications.  相似文献   

6.
It was found that mechanical activation of a mixture containing iron, aluminum, and oxide iron resulted in mechanochemical reduction of iron oxide and formation of a Fe/Al/Al2O3 nanostructural mechanocomposite. High-temperature self-propagating synthesis (SHS) using this composite as a precursor yielded a FeAl/Al2O3 composite, which retained the morphology and dimensional characteristics of the precursor. During mechanical activation of a mixture of iron, aluminum, and chromium oxide, complete reduction of the latter did not occur but SHS also led to the formation of an intermetallide/oxide nanocomposite, in which chromium atoms were incorporated in the structure of iron aluminide.  相似文献   

7.
Submicrometer (200–800 nm) ZrB2 powders have been successfully prepared via a new ZrO2–C–BN precursor powder system at a relatively low temperature (1550°C) for 1.5 h. As a moderate cost boron source, BN has a well‐defined stoichiometry and low impurity. Both thermodynamic and experimental results indicated that ZrC was formed below 1300°C, a temperature required for ZrB2 formation. Moreover, the reaction of ZrC–BN mixture at 1300°C indicated that the ZrC acted as an effective direct reducing reagent for BN to form ZrB2, indicating that the pathway involving the formation of intermediate phase ZrC determined the formation mechanism.  相似文献   

8.
In this work, quenching stress generated during the deposition process and the Coefficient of Thermal Expansion (CTE) thermal mismatch stress produced during the cooling down process of Double-Ceramic-Layers Thermal Barrier Coating System (DCL-TBCs) have been intensively examined. The thickness ratio of Lanthanum Zirconate (LZ, La2Zr2O7) coating to stabilized Zirconia (YSZ, ZrO2-8%Y2O3) coating, have been theoretically analyzed. In addition, DCL-TBCs specimens with different thickness ratio of LZ to YSZ coatings were fabricated, to study the effect of this thickness ratio by specimen curvature and crack density analysis. Meanwhile, Finite Element Method (FEM) has been carried out to validate results obtained theoretically. The results reveal that by comparison to CTE thermal mismatch stress, quenching stress has remarkable effect on total thermal stress. By increasing thickness ratio of YSZ to LZ coatings, average thermal stress and crack densities in YSZ and LZ coatings increased. Nevertheless, the curvature ratio of DCL-TBCs specimen decreases.  相似文献   

9.
Powders composing of La2Zr2O7 (LZ) and (Zr0.8Y0.2)O1.9 (10YSZ) phases (volume ratio = 1:1) were synthesized by using a sol‐spray pyrolysis method. The effects of annealing temperature on the grain size and lattice parameter of the LZ–10YSZ powders were investigated. XRD results showed that the grain size of LZ and 10YSZ phases gradually grew from 10 to 95 nm and from 5 to 65 nm as the annealing temperature elevated from 900°C to 1200°C. The relative decreasing percentage of grain size comparing to that of the single‐phase LZ and 10YSZ powders were in the range 9%–36% and 37%–86%. The activation energy for grain growth of LZ and 10YSZ phases in the composite powders were 225 ± 12 and 382 ± 17 kJ/mol, which were 20% and 183% higher than that of the single‐phase counterparts. Obvious lattice contraction and lattice expansion for LZ and 10YSZ phases were observed at temperatures below 1100°C, respectively. SEM results revealed that LZ and 10YSZ phases were homogeneously distributed in the sintered bulk. The TEM results suggested that the grain growth was affected by the interaction on nanometer length scales of grain boundaries between LZ and 10YSZ phases in the composite.  相似文献   

10.
The activity of plates of CuO/Al2O3/FeAlO/FeAl structured cermet catalysts is compared by varying their alumina content. The catalysts were prepared by impregnation of cermet supports obtained by mechanochemical activation of powder mixtures of an alumina precursor [20–50% (wt.)], iron, and aluminum, followed by hydrothermal treatment and calcination. It is shown that increasing the content of the alumina precursor (product of thermal activation of gibbsite) increases the specific surface area of the support and the mesopore and macropore volumes and reduces its mechanical strength. The content of the active component (CuO) also increases, resulting in an increase in the specific activity of catalyst despite a reduction in the effectiveness of using the active component. The activity of catalysts with a moderate concentration of alumina is sufficient to initiate methane oxidation.  相似文献   

11.
Lanthanum zirconate (LZ) films with a controllable La/Zr composition were prepared by laser enhanced chemical vapor deposition (LCVD). The effects of different precursors ratio, i.e. the La(dpm)3/Zr(dpm)4 molar ratio, on composition, crystal structure, morphology and electrical conductivity of films were investigated. The formation region of columnar and purely cubic pyrochlore structured LZ films with a controllable La/Zr molar ratio in a wide range of 0.51–2.53 was mapped. Crystal structure changed with the different precursor's ratio, which was caused by atomic substitution between lanthanum and zirconium, being proved by combining with experimental and theoretical XRD patterns. It is found that electrical conductivity of non-stoichiometric LZ films is up to 4.3?×?10?3 S?cm?1 at 1073?K. The columnar pyrochlore structured LZ films with a wide region of non-stoichiometric compositions are expected to be candidates for many potential applications, such as dielectric, thermal barrier coatings and nuclear waste treatment materials.  相似文献   

12.
The phase ZnFe2O4, franklinite, with spinel structure, has been synthesised using solid-state reactions from the mechanically mixed powders of several precursor salts. However, this method requires a high-temperature treatment for some hours to homogenise the whole composition to obtain a single phase. In this paper ZnFe2O4 has been prepared by the ceramic method using different precursors of Fe and Zn. The spinel has also been prepared by a citrate route that allows to prepare a homogeneous single phase at lower temperature and shorter annealing time. The citrate method has let to obtain single phase of ZnFe2O4 at 600°C/2 h. In addition, this processing increases the inversion grade with respect to the ceramic ones obtained with the same precursor salts. The samples have been studied and characterised by means of differential thermal analysis (DTA), thermal gravimetric analysis (TGA), powder X-ray diffraction (XRD), Rietveld refinement method, Mössbauer spectroscopy, scanning electron microscopy (SEM), energy dispersion of X-ray spectrometry (EDX) and magnetic measurements. The inversion grade has been detected by means of Rietveld analyses and corroborated by magnetic measurements. ©  相似文献   

13.
Mo/Al2O3 catalysts prepared via fixation of Mo(3-C3H5)4 on Al2O3 or by conventional impregnation (2.2 or 2.9 wt% Mo) have been compared with regard to their catalytic behavior in the metathesis of propene in different temperature ranges (293-323 K, 473 K). Different active sites have been distinguished. A site derived from a Mo(VI) precursor by thermal activation in inert gas exhibits stable activity, with a propene reaction order near 1. Other sites that are derived from a reduced Mo precursor, probably Mo(IV), are of higher activity but unstable with time-on-stream and also at elevated temperatures (>323 K). These sites support the metathesis at a propene reaction order of 0.5 and with activation energies between 10 and 25 kJ/mol depending on unknown structural details. Due to their instability, they cannot contribute to the high-temperature (T > 373 K) metathesis activity observed with Mo/Al2O3 catalysts. The latter is supported by Mo(VI)-derived sites or, at after reduction of catalysts with higher Mo contents, by Mo(IV)-derived sites that are different from those identified in the present study.  相似文献   

14.
Lanthanum–zirconium–cerium composite oxide (La2(Zr0.7Ce0.3)2O7, LZ7C3) coatings were prepared under different conditions by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies, cyclic oxidation behavior of these coatings were studied. Elemental analysis indicates that the coating composition has partially deviated from the stoichiometry of the ingot, and the existence of excess La2O3 is also observed. The optimized composition of LZ7C3 coatings could be effectively achieved by the addition of excess CeO2 into the ingot or by properly controlling the deposition energy. Meanwhile, when the deposition energy is 1.15 × 104–1.30 × 104 J/cm2, the coating has a similar X-ray diffraction (XRD) pattern to the ingot, and the thermal cycling life of the coating is also superior to other coatings. The spallation of the coatings occurs either within the ceramic layer approximately 6–10.5 μm above its thermally grown oxide (TGO) layer or at the interface between ceramic layer and bond coat.  相似文献   

15.
The crystalline α-MnO2 and β-MnO2 nanorods have been successfully prepared via a facile hydrothermal method from γ-MnOOH nanorods precursor, respectively. The samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscope (FESEM) and Fourier transformed infrared spectra (FTIR). The morphology and structure of γ-MnOOH nanorods precursors have a great influence on the crystal structure of the obtained products. The α-MnO2 nanorods are prepared from the 100°C γ-MnOOH precursor, while the β-MnO2 nanorods are obtained from the 150°C γ-MnOOH precursor, respectively. Besides, the catalytic activity of the prepared α-MnO2 and β-MnO2 nanorods for the H2O2 decomposition has been investigated comparatively, and the latter shows better catalytic activity.  相似文献   

16.
Polyacrylonitrile (PAN), a kind of multi-purpose man-made polymer material, has been widely used in various products, including carbon fiber precursor fiber manufacturing. Organic/inorganic nanocomposites can provide precursor material with unique properties due to optimal structural design. Herein, PAN based carbon nanofiber (CNF) coated zirconium borate (ZrB2) particles fiber film was prepared via electrostatic spinning strategy. Crosslinking network between carbon atoms formed at 280 °C due to long chain PAN molecules, which underwent pyrolysis at 800–1200 °C. Scanning electron microscope analysis showed that ductile CNF/ZrB2 hybrid material with entanglement structure was successfully fabricated. Phase composition of the materials was analyzed by X-ray diffractometer, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy, which confirmed the presence of carbon atoms in the materials. Entanglement structure between CNFs and ZrB2 enhanced tensile performance of nanohybrid film, in which CNF film with 25% ZrB2 content exhibited optimal mechanical properties. The design of nanohybrid structure provides facile and universal approach for exploration of organic/inorganic nanocomposites with controlled structures and excellent mechanical properties.  相似文献   

17.
In this study, the effect of bismuth content on the crystal structure, morphology and electric properties of barium bismuth niobate (BaBi2Nb2O9) thin films was explored with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), atomic force microscopy (AFM) and dielectric properties. BaBi2Nb2O9 (BBN) thin films have been successfully prepared by the polymeric precursor methods and deposited by spin coating on Pt/Ti/SiO2/Si (1 0 0) substrates. The phase formation, the grain size and morphology of the thin films were influenced by the addition of bismuth in excess. It was observed that the formation of single phase BBN for films was prepared with excess of bismuth up to 2 wt%. The films prepared with excess of the bismuth showed higher grain size and better dielectric properties. The 2 wt% bismuth excess BBN thin film exhibited dielectric constant of about 335 with a loss of 0.049 at a frequency of 100 kHz at room temperature.  相似文献   

18.
《Ceramics International》2019,45(11):14198-14204
Ceramic coatings have been widely used in industrial fields. K2Ti6O13 fibers could be a potential coating material for low thermal conductivity, high mechanical strength and infrared reflectivity. The precursor fibers, using potassium acetate (CH3COOK) and tetrabutyl titanate (TBOT) as potassium and titanium sources, were prepared by the electrospinning technique with the sol-gel method. To prepare K2Ti6O13 fibers, the mole ratio of K/Ti was adjusted from 1:2 to 1:3. The transformation of other phases of potassium titanates was characterized by XRD patterns and Raman spectra. The effects of mole ratio of K/Ti on morphology of samples have been investigated. Well-crystallized fibers were prepared with single-crystal K2Ti6O13 structure. The corresponding morphology and microstructure evolution were studied by SEM and TEM. The as-obtained K2Ti6O13 fibers possessed the high near-infrared (NIR) reflectivity of 98%.  相似文献   

19.
The formation of CaZrTi2O7 zirconolite and its crystallization in sodium alumino-borosilicate glass has been investigated via sintering in air. The ceramic precursor is prepared using a soft chemistry route to ensure ultimate mixing of the reactants at the molecular level. A nearly phase pure CaZrTi2O7 zirconolite is formed after sintering the ceramic precursor at 1400°C for 12 hours. In order to form zirconolite glass-ceramics, various processing conditions are investigated including sintering temperatures, different glass composition precursors, and ceramic to glass weight ratios. Zirconolite crystallization on the surface and inside of glass-ceramic-pelletized samples is investigated. Higher ceramic to glass weight ratio leads to the formation of zirconolite as crystalline phase, which is quite dominant in glass.  相似文献   

20.
PbTiO3 and/or BaTiO3 were systematically introduced into Pb(Zn1/2W1/2)O3 and resultant phase developments in terms of perovskite formation were investigated. Ceramic powders were prepared via a B-site precursor route to further assist the perovskite formation. Weak-field dielectric properties of the sintered samples were examined. For Pb(Zn1/2W1/2)O3-rich compositions, multiphase ceramics resulted and formation of monophasic perovskite turned out to be not successful even by the B-site precursor method. Values of the perovskite formation yield and the maximum dielectric constant increased with increasing fractions of the substituent species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号