首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(2):2314-2319
Li4SiO4 pebbles and Li2O pebbles have been considered as the potential candidates for tritium breeders. Li2O exhibits higher lithium density whereas worse lithium loss and hygroscopicity compared with Li4SiO4. It is anticipated to obtain an advanced breeder by combining Li4SiO4 with Li2O. The coexistence of Li4SiO4 and Li2O powders could not be obtained by solid state reaction using Li2CO3 as lithium source, while the biphasic Li4SiO4-xLi2O (x=0.1, 0.2, 0.3, 0.4) powders were prepared by sol-gel method in this experiment. Meanwhile, the biphasic Li4SiO4-xLi2O pebbles were fabricated by a wet method for the first time. The Li2O aggregated at the grain boundaries and promoted the grain growth of the Li4SiO4. The grain size and the crush load of the Li4SiO4-0.3Li2O pebbles reached 32.3 µm and 46.5 N, respectively.  相似文献   

2.
《Ceramics International》2017,43(7):5680-5686
Nanostructured Li2TiO3 ceramics which may have effective thermal conductivity, excellent tritium release behaviour and good irradiation resistance are regarded as a promising solid tritium breeding material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER). However, due to the limitations of the preparation technology, reports concerning Li2TiO3 nanoceramics have been rare. In this paper, uniform nano-Li2TiO3 powder particles which were essential to obtain nanostructured Li2TiO3 ceramics pebbles were synthesised via a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method, and then rare, homogeneous nanostructured Li2TiO3 ceramic pebbles were fabricated with the as-prepared powder particles. The mechanisms by which CTAB can reduce particle agglomeration and be of assistance in achieving a nanostructured Li2TiO3 ceramic were also investigated. In addition, systematic experiments on the relationship between the added amount of CTAB and the mechanical properties of the Li2TiO3 ceramic structure were also carried out. The results revealed that the desired Li2TiO3 nanoceramic could be fabricated when 3% CTAB was introduced, as the Li2TiO3 pebbles obtained had a small grain size (90 nm), high relative density (89.71%T.D.) and crush load (99.93 N), which were expected to show favourable potential as a promising tritium breeder material in the fusion reactor blanket.  相似文献   

3.
Li4SiO4 has been widely studied as attractive tritium breeding materials due to its innate merits. Considering the potential advantages of nanostructure in tritium breeding materials, a distinctive process was developed to obtain nanostructured Li4SiO4 pebbles. In brief, ultrafine precursor powders were synthesized by solvothermal method without using surfactants, and then indirect wet method was adopted to generate the green spheres with homogeneous microstructure. After that, the suitable sintering conditions were defined by studying the effects of sintering parameters on the grain size evolution, and nanostructured Ti-doped Li4SiO4 pebbles were first obtained by two-step sintering method. This study will be expected to provide references for fabricating other Li-based tritium breeding materials.  相似文献   

4.
Li2TiO3 is a candidate material for tritium breeding in the future nuclear fusion reactor. In this study, Li2TiO3 powder was synthesized by ultrasonic-assisted solution combustion synthesis (USCS) in a single step. The ultrasonic transducer with the power of 1000 W was introduced in the synthesis process. The crystallite size of Li2TiO3 powder prepared by utilization of ultrasonic power is significantly decreased to ∼5.0 nm, while the one obtained without ultrasonic power is 20.0 nm. Li2TiO3 ceramic sintered from USCS powder at 800 °C exhibits the small grain size of 330 nm and the open pores size of 140 nm. The crush load of the ceramic reaches 37.2 N although the structure is porous. Compared with the ceramic prepared by solid-state reaction and conventional solution combustion synthesis, USCS sample has a higher conductivity of 2.0 × 10−6 S m−1 at room temperature, indicating the lower tritium diffusion barrier in the ceramic.  相似文献   

5.
《Ceramics International》2023,49(5):7623-7629
Li4Si1–xTixO4 ceramic solid solution was considered as a promising tritium breeding material for fusion reactor blanket. In this work, the effects of the sintering atmosphere on the phase composition, microstructure, and mechanical properties of Li4Si0.7Ti0.3O4 ceramic pebbles were investigated for the first time, aiming to explore the optimal sintering atmosphere for this solid solution. The results show that compared with air and argon atmosphere, the negative pressure of vacuum atmosphere was more favorable for Ti to enter the Li4SiO4 crystal structure as a substitute for Si atom to form a solid solution. More importantly, sintering in argon-vacuum atmosphere can ensure the formation of solid solution while fully exerting the liquid phase sintering effect. The crushing load of the Li4Si0.7Ti0.3O4 ceramic pebbles sintered at 800 °C in argon-vacuum atmosphere reaches 30.3 ± 3.2 N. In general, the appropriate sintering atmosphere was of great significance for obtaining Li4Si0.7Ti0.3O4 solid solution to meet the performance requirements of tritium breeding blanket.  相似文献   

6.
The bi-phase Li2TiO3–Li4SiO4 ceramic pebbles have been considered a promising breeder to realize the tritium self-sustainment in the blanket. However, up to now, the reported ceramic pebbles have the disadvantages of low yield, poor crushing load, and loose internal structure, which cannot meet the practical application requirements. In this work, the Li2TiO3–Li4SiO4 ceramic pebbles with excellent mechanical properties were fabricated successfully via the centrifugal granulation method with the assistance of introducing a spray-drying process, simulating particle trajectory by discrete element software and improving bonding interface between core and shell with ethylene glycol. The composition, microstructure, and inner structure of the Li2TiO3–Li4SiO4 ceramic pebbles were investigated, respectively, through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray computed tomography (CT). It can be found that the employment of the ethylene glycol solution on the surface of Li2TiO3 can make the core and the shell combine well. Moreover, the effect of the rolling speed of the Li2TiO3–Li4SiO4 ceramic pebbles was investigated via discrete element method (EDEM) simulation and experiments. The experimental results displayed that the Li2TiO3–Li4SiO4 ceramic pebbles sintered at 1100°C for 2 h have a uniform diameter of 1 mm, a good sphericity of 0.97, and an excellent crushing load of 82.4 N, which are superior to those pebbles that obtained by using the traditional wet methods. Moreover, the CT results showed that the appropriate porosity of the core was 3.21% and of the shell was 10.73%. Therefore, the simple centrifugal granulation method can be applied to prepare the Li2TiO3–Li4SiO4 ceramic pebbles in a large scale and shed a light to investigate the relevant advanced biphasic tritium breeder materials in the future.  相似文献   

7.
Wet methods as an emerging technique for the preparation of millimeter-sized tritium breeding ceramic pebbles, but the imposed air pressure as the driving forces to extrude slurry droplets are fluctuating during the reciprocating extrusion process, which caused a slight inconsistency in pebble sizes. In this study, a piezoelectric micro-droplet jetting approach was proposed by introducing a piezo-driven valve and modifying the slurry barrel mechanism to realize the air pressure invariable. A self-developed piezoelectric micro-droplet jetting device was successfully utilized to prepare Li2TiO3 green pebbles with coefficients of variation being lower than 2.7%. The size of the green pebbles could be precisely controlled in the range of 0.88–1.37 mm by manipulating the nozzle diameter, the air pressure, and the jetting time. The pebbles sintered at 1000°C for 3 h possessed a small grain size of ∼5.9 μm, a satisfied relative density of ∼84.8% T.D., and a high crush load of ∼25.7 N, implying the prepared pebbles could be used as a promising solid tritium breeding material in fusion reactors. These findings are anticipated to provide new opportunities for the highly efficient preparation of size-controllable tritium breeding ceramic pebbles.  相似文献   

8.
The effect of different amount of Li2TiO3(LT) (0–15?wt%) addition on the properties of composite Li4SiO4 (LS) ceramic pebbles were studied. The Li4SiO4-Li2TiO3 composite powder was prepared in-situ using solid state method at a calcination temperature as low as 800?°C. The composite pebbles were fabricated using a cost-effective and simple technique called extrusion-spherodization. The sintered pebbles were characterized for density, grain size, pore size distribution, crush load and moisture stability. The density of Li4SiO4 composite pebbles was improved for LS-5?wt% LT in comparison to LS pebbles when fired at 1000?°C. Moreover, the LS grain size in the composite pebbles was reduced (5.8?μm) in comparison to LS pebbles. We also found that the average crush load value of the LS-5?wt%LT composite pebbles had been improved by nearly 100% (33?N) to that of the pure LS pebbles (17?N). The LS-5?wt% LT pebbles showed improvement in stability to moisture.  相似文献   

9.
The tritium breeder and structural materials are necessary components in the blanket to realize tritium (T) self-sustainment of nuclear fusion. The long-term exposure between tritium breeders and structural materials will cause surface corrosion in irradiation environments and then further affect the tritium release behavior. In this study, chemical compatibility between Li2TiO3 ceramic pebbles and advanced structural materials was studied systematically at 700 °C for 300 h under He+0.1 % H2 environment, respectively. The color of the Li2TiO3 ceramic pebbles changes from white to dark grey and black. Moreover, the grain size of Li2TiO3 ceramic pebbles increases to more than 5 μm, and the crushing load decreased slightly. For the structural materials, the Al-rich oxide layer with about 188.7 nm of 14Cr-5Al oxide dispersion strengthened (ODS) steel and Cr-Fe rich oxide layer with about 1.04 μm of 14Cr-ODS steel were observed on the cross-section. The effective diffusion coefficient of O element in Li2TiO3 ceramic moved into ODS steel at 700 °C was calculated to be 3.3 × 10−16cm2/s and 1.02 × 10−14 cm2/s. Unfortunately, when SiC ceramics were contacted with the pebbles, the crystal phase transformed into SiO2, which severely limits its application. Therefore, these results will provide guidance for the selection of structural materials in the future.  相似文献   

10.
Li4SiO4 and Li2TiO3 have long been recognized as two excellent promising tritium breeding materials. In this paper, two kinds of ceramic pebbles, Li4SiO4 pure phase ceramic pebbles and Li4SiO4-xLi2TiO3 multiphase ceramic pebbles were prepared by a melt spraying method at a superheating temperature of 100 ℃ and then tested for their performance. The proportion of pebbles with a particle diameter of 0.8∼1.2 mm reached the maximum of 24.02 % when the spraying pressure is 0.04 MPa. The surface of the pebbles prepared by the spraying method was smooth, and the surface roughness was reported for the first time to reach 2.039 μm. The sphericity reached 1.027. When the Ti/Si molar ratio was 0.5, the crush load of the pebbles after heat treatment reached 71.6 N and the thermal conductivity of the materials reached its maximum of 3.098 W/(m·K) at 700 ℃.  相似文献   

11.
The long-term thermal stability of tritium breeding materials during service is a key factor to ensure efficient tritium release. In this study, the long-term thermal stability of advanced Li4TiO4–Li2TiO3 core–shell breeding pebbles under continuous heating in 1%H2/Ar at 900°C was investigated for the first time. The results show that this core–shell material loses 3.4% Li mass after heating for 30 days, resulting in a reduction in Li density to .415 g/cm3, which is still significantly higher than other breeding materials. The moisture in the sample bed will determine the form of Li volatilization and thus affect the rate of Li mass loss. The core–shell pebbles maintain favorable phase stability during long-term heating, and the grain sizes of the Li2TO3 shell and Li4TiO4 core after 30 days of heating are 6.5 ± 1.5 and 6.9 ± 2.5 μm, respectively. Moreover, the samples did not crack or collapse during long-term heating and still had a satisfactory crushing strength of 37.61 ± 7.13 N after 30 days of heating. Overall, the high Li density and good thermal stability during long-term heating demonstrate that the Li4TiO4–Li2TiO3 core–shell breeding pebbles are a very reliable tritium breeding material for long-term service under harsh operating conditions.  相似文献   

12.
Using inexpensive porous diatomite as silicon source, novel Li4SiO4-based sorbents for high temperature CO2 capture were prepared through the solid-state reaction method at lower temperature (700 °C). Effect of different raw material ratios on CO2 absorption capacity was investigated. The results showed that CO2 absorption capacity was dependent on the raw material ratio. When the raw material ratio was 2.6:1, the CO2 absorption capacity reached 30.32 wt% (83% of the theoretical absorption capacity) in the atmosphere (50 mL/min N2 and 50 mL/min CO2). Meanwhile, it was found that the as-prepared Li4SiO4-based sorbents from diatomite exhibited good absorption–desorption performance.  相似文献   

13.
《Ceramics International》2022,48(20):29944-29950
In this study, Li-rich 2Li2TiO3–Li4SiO4 composite breeding ceramics were prepared for the first time through a two-step low-temperature sintering route to meet the increasingly stringent performance requirements of tritium breeding materials. The effects of excess Li addition and sintering atmosphere on the phase composition, mechanical properties, and microstructure of the composite breeding ceramics were systematically studied. A two-step low-temperature sintering method was proposed to integrate the advantages of different sintering environments. The results show that moderate Li addition can significantly enhance the crushing load of composite ceramics while maintaining the nanostructure. However, further increasing the amount of Li addition does not continue to increase the crushing load, and will even affect the structural uniformity of the composite breeding ceramics. Most importantly, the S2.5 (2Li2.5TiO3–Li4SiO4, molar ratio) composite breeding ceramics sintered at 750 °C in an air-vacuum environment exhibited a grain size of ~86 nm and a crushing load of ~66.9 N, which has not been achieved by previous studies.  相似文献   

14.
For the operation of D-T fusion reactor, tritium breeding materials will be adopted to produce tritium. Li2TiO3–Li4SiO4 biphasic breeders are considered as promising breeding materials due to combining the advantages of Li2TiO3 and Li4SiO4. The annihilation kinetics of defects induced by γ-ray irradiation in xLi2TiO3-(1-x) Li4SiO4 (molar ratio: x = 0.25,0.5,0.75) have been investigated. ESR and Easyspin simulation were employed to elucidate the annihilation processes of the irradiation defects. The defects of E′-center and O?-center were introduced by irradiation. The amount of defects decreased as the molar ratio of Li2TiO3/Li4SiO4 increased. It was indicated that the irradiation stability of Li2TiO3 was better than that of Li4SiO4. According to Easyspin simulation, the defect density of E′-center and O?-center was obtained respectively and the amount of defects decreased as the annealing temperature increased. The activation energy and kinetics equation of E′-center and O?-center in xLi2TiO3-(1-x) Li4SiO4 (x = 0.25,0.5,0.75) were obtained. Based on annihilation kinetics, the correlation between annihilation of irradiation defects and tritium release was given.  相似文献   

15.
High brightness Y2SiO5:Ce phosphor powders with spherical shape and fine size were synthesized by melting salt assisted sol–gel method (MS&Sol–Gel). Commercial tetraethyl orthosilicate was used as the silica source and rare earth oxides were used as rare earth source. The prepared Y2SiO5:Ce powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle sizer, and fluorescentometer techniques. Y2SiO5:Ce powders were obtained at significantly lower temperature than that by conventional techniques. When sintered at 1200 °C for 2 h with 5 wt.% LiF and 2 wt.% KH2PO4 as fluxes, particles with spherical shape and narrow particle distribution could be obtained. Moreover, the grain size of the powders prepared through this process was in the range of 2–7 μm, strongly depending on the thermal treatments and the species of fluxes. PL intensity of the prepared Y2SiO5:Ce phosphor using 5 wt.% LiF and 2 wt.% KH2PO4 as fluxes was similar to that of commercial product.  相似文献   

16.
《Ceramics International》2022,48(22):33474-33484
Li4TiO4 is an attractive tritium breeding material due to its high lithium density for the application in fusion reactors. Diffusion in the crystal lattice is a vital step of the tritium release process. In this paper, we report the diffusion of a tritium interstitial in the Li4TiO4 crystal from first-principles calculations. The tritium interstitial sites, diffusion paths and activation energies of diffusion are obtained. We find the most favorable tritium diffusion path is along <001> of the Li4TiO4 crystal with an activation energy of 0.410 eV. The activation energy is 0.366 eV for tritium at 450 K after the vibrational correction is applied. The calculated activation energy is in good agreement with the experimental value of 0.370 eV.  相似文献   

17.
Li2TiO3 is considered as one of the best candidates for breeding materials. This article adopted a modification water-based sol–gel method to synthesize nano-Li2TiO3 powders, which overcomes the poor phase purity, coarse grain, and inferior crushing strength described in the previous literature. In this paper, the thermal effect of the precursor, the crystal phase, and the morphology of the powders were characterized by thermogravimetric analysis/differential thermal analysis (TG/DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The nano-structured Li2TiO3 powders with good dispersion and an average particle size of 20–50 nm were successfully synthesized at 600°C by controlling PH and hydrolysis rate. Moreover, the phase transition temperature for the monoclinic phase β-Li2TiO3 was as low as 600°C, which is lower than 750°C using the traditional solid-state method. Meanwhile, the morphology, porosity, crushing load, and thermal conductivity of ceramic pebbles are characterized systematically by using scanning electron microscope (SEM), mercury injection meter, compression strength equipment, and laser scattering method, respectively. Experimental results showed that the Li2TiO3 ceramic pebbles with a sphericity of .98, crush load of 48.4 N, and relative density of 90.03 % were successfully prepared at 1050°C for 2 h. This method will provide new guidance for the preparation of tritium breeders.  相似文献   

18.
《Ceramics International》2016,42(9):11161-11164
The effects of Li2O–B2O3–Bi2O3–SiO2 (LBBS) glass on the sintering characteristics and microwave dielectric properties of (Zn0.95Co0.05)2SiO4 were investigated in this study. (Zn0.95Co0.05)2SiO4 powders were fabricated by traditional solid-state preparation, and LBBS glass was synthesised by quenching method. The LBBS glass can effectively reduce the sintering temperature of (Zn0.95Co0.05)2SiO4 from 1300 °C to 900 °C and thus promote the densification and uniformity of the specimens. XRD patterns indicated that no other secondary phases existed in our doping range (0–2 wt%). To obtain the highest sintering density and a uniform microstructure when the samples were sintered at 900 °C, the optimal doping content was set to be 1.5 wt%. The sample also demonstrated the following excellent microwave dielectric properties: ɛr=6.16, Qf=33,000 GHz and τf=−59 ppm/°C.  相似文献   

19.
The phosphor powders with the composition of Ba1.1Sr0.88SiO4:Eu0.02 were prepared by spray pyrolysis. Barium fluoride and barium nitrate were used as the source materials of Ba component. Ba1.1Sr0.88SiO4:Eu0.02 phosphor powders had broad excitation wavelength ranging from 220 to 460 nm irrespective of mole ratios of barium fluoride and barium nitrate. Ba1.1Sr0.88SiO4:Eu0.02 phosphor powders had broad emission spectrum between 470 and 600 nm and had the maximum peak intensity at 522 nm. Substitution of BaF2 instead of some amount of barium nitrate improved the photoluminescence intensities of Ba1.1Sr0.88SiO4:Eu0.02 phosphor powders. The maximum photoluminescence intensity of Ba1.1Sr0.88SiO4:Eu0.02 phosphor powders prepared from spray solution with barium fluoride and barium nitrate was about 595% of the phosphor powders prepared from spray solution without barium fluoride. The sky blue light emitting LED with prepared phosphor powders showed (0.1958 and 0.2719) on the CIE chromaticity diagram and luminous intensity of 1.68 cd.  相似文献   

20.
An attractive way to prepare nanocrystalline tantalum zirconium carbide ternary ceramics was proposed and confirmed experimentally. The experimental results showed the Ta4ZrC5 powders were successfully fabricated by joint processes of solvothermal and carbothermal reaction. The thermodynamic change process in the Ta2O5-ZrO2-C system was studied. The reactions were substantially completed at relatively lower temperatures (∼1873 K/1 h) and the synthesized powders had a small average crystallite size (∼10 nm). The crystalline structure and the nitrogen sorption isotherms patterns of the product were studied. Besides, a monolithic Ta4ZrC5 ceramics was densified without sintering additives by pressureless sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号