首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(4):5075-5081
Zinc selenide (ZnSe) micro-grasses and microspheres have been successfully grown on graphene oxide sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized graphene oxide (GO)/ZnSe microstructures have been characterized by X-ray power diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), ultraviolet-visible (UV–vis) absorption spectroscopy and photoluminescence (PL) spectroscopy. By adjusting the concentration of NaOH and EDTA, needle-like, coral grass-like, orchid-like, and spherical ZnSe microstructures have been synthesized.  相似文献   

2.
ZnSe rose-like nanoflowers and microspheres were successfully grown on Zn foils by the hydrothermal method at 220 °C for 36 h. Scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS), ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) spectroscopy were used to observe the morphologies, structures, chemical compositions and optical properties of the as-synthesized ZnSe samples. The XRD patterns revealed that as-synthesized ZnSe nanoflowers and microspheres have cubic zinc blende structure. The SEM observations showed that low concentration of EDTA was beneficial to obtain the ZnSe rose-like nanoflowers. With increase of EDTA concentration, the morphology of the as-synthesized samples transformed into microspheres. It was proved that EDTA played a significant role during the synthesis of ZnSe rose-like nanoflowers and microspheres. Room temperature photoluminescence (PL) spectroscopy of the samples showed that the spectra were wide band from blue light to orange light. Furthermore, a possible formation mechanism of ZnSe nanoflowers and microspheres was proposed and discussed.  相似文献   

3.
Ce doped ZnO/rGO composite materials were prepared by a one-pot hydrothermal process without any surfactant. The size, crystallography and morphology of the composite were investigated in detail by X- ray diffraction (XRD) studies, Raman spectroscopy, scanning electron microscopic (SEM), transmission electron microscopic (TEM) studies, UV–Vis spectroscopic analysis and X-ray photoelectron spectroscopic (XPS) analysis. The XRD pattern substantiates the formation of Ce doped ZnO/rGO composite revealing the wurtzite structure of ZnO. The SEM micrograph illustrates flower-like morphology for ZnO/rGO composite which coalesced further after cerium incorporation. Additionally, TEM image illustrated that ZnO hexagons were disoriented from its flower structure in Ce/ZnO/rGO composite. The XPS spectra further reaffirm the formation of cerium doped ZnO/rGO composite. The photoluminescence (PL) spectra confirms that emission occurs in the UV and visible region and several active sub-levels were observed in visible region on deconvolution, due to the incorporation of cerium. Antibacterial activity towards B. subtills and V. harveyi affirmed that the incorporation of Ce in ZnO/rGO composite leads to an improved antibacterial activity.  相似文献   

4.
《Ceramics International》2016,42(5):5766-5771
In this work, TiO2–reduced graphene oxide (RGO) nanocomposites were successfully produced by an ultrasonication-assisted reduction process. The reduction of graphene oxide (GO) and the formation TiO2 crystals occurred simultaneously. The synthesized nanocomposite was characterized by SEM, EDX, Raman spectroscopy, FTIR, XRD, XPS, UV–vis spectroscopy, photoluminescence spectrometer and electrochemical impedance spectroscopy. As a result of the introduction of RGO, the light absorption of octahedral TiO2 was markedly improved. The photocatalytic results revealed that weight percent of RGO has substantial influence on degradation of Rhodamine B under visible light irradiation. The enhancement of the photocatalytic activity can be attributed to the enhancement of the visible-light irradiation harvesting and efficiently separation of the photogenerated charge carriers. Meanwhile, upon the RGO loading, the photoelectric conversion efficiency of TiO2–RGO nanocomposite modified electrode was also highly improved.  相似文献   

5.
《Ceramics International》2021,47(22):31927-31939
The goal of this study was to create highly efficient dye-sensitized solar cells (DSSCs) using strontium doped zinc oxide-reduced graphene oxide (Sr-doped ZnO/rGO) nanocomposites. As photo-anodes of DSSCs, ZnO, ZnO/rGO (with weight percent rGO in composites: 0, 0.01, 0.1, 0.5, and 1 wt%) and Sr-doped ZnO/rGO (with Zn1-xSrxO nanoparticle stoichiometry: x = 0, 0.02, 0.04, 0.06 and 0.08) nanocomposites were designed and characterized. AFM, FESEM, XRD, EDS, XPS, PL, and FTIR analyses were used to investigate the morphology and structure properties of prepared nanocomposites. UV–vis spectroscopy and photo-electrochemical measurements were used to investigate the efficiency of prepared photo-anodes. The efficiency (η) and short-circuit photocurrent density (JSC) of DSSCs based on Zn0.92Sr0.08O/rGO nanocomposite were 7.98 % and 18.4 mA cm−2, respectively. The results showed that doping Sr on ZnO/rGO nanocomposites resulted in a wide bandgap energy and increased the values of η, JSC, IPCE, and photo-anode electron transportability. These findings suggest that Sr-doped ZnO/rGO nanocomposites can provide a novel approach for increasing photo-electrochemical activity in ZnO-based DSSCs.  相似文献   

6.
The present work demonstrates a facile route for preparing LaFeO3/rGO nanocomposites comprising of metal oxide nanoparticles and graphene. Structural, morphology, optical and photocatalytic studies of the samples were characterized using powder X-ray diffraction (XRD), FT-IR, Raman, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), thermogravimetry (TGA), X-ray photoelectron spectroscopy, UV–visible and photocatalytic. LaFeO3/rGO nanocomposites believed as an effective photocatalyst for the degradation of methyl orange (MO) dye under visible light irradiation. The inclusion of carbon enhances the light absorption of LaFeO3, resulting in the enhanced photocatalytic activity of the nanocomposite. The degradation of MO dye under visible light source was completely achieved using LaFeO3/rGO as a catalyst.  相似文献   

7.
Homogeneous ZnSe hollow microspheres were synthesized on a large scale through an EDTA-assisted mixed solvothermal strategy without any surfactants and templates. The as-synthesized ZnSe microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV–vis absorption spectroscopy. The results of photodegradation of methylene blue (MB) indicate that the hollow microspheres exhibit a visible-light-responsive photocatalytic behavior. As compared with the bulk ZnSe, the photocatalytic efficiency for the hollow microspheres was enhanced remarkably, which might be related with the hollow aggregates of ZnSe nanocrystallites.  相似文献   

8.
Fluoroelastomer (FKM)/reduced graphene oxide (rGO) composites are in situ prepared by solvent thermal reduction method in N,N‐dimethylformamide (DMF) solution. The reduction of graphene oxide (GO) is characterized by X‐Ray photoelectron (XPS), ultraviolet–visible (UV–vis), and Fourier transform infrared (FTIR) spectra. GO and rGO are both efficient fillers to improve the mechanical properties of FKM. The dispersibility of rGO is improved after solvent thermal reduction which is confirmed by scanning electron micrograph (SEM) and X‐ray diffraction (XRD). The homogenous suspension of FKM/rGO composites in DMF can stay stable for more than a month. The dielectric permittivity of FKM/rGO (5 phr) is 26.4 at the frequency of 10−1 Hz, higher than the pure FKM (8.1). The thermal conductivity of rGO/FKM composites increases. POLYM. COMPOS., 35:1779–1785, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
《Ceramics International》2017,43(12):8655-8663
The heterogeneous titanium oxide-reduced graphene oxide-silver (TiO2/RGO/Ag) nanocomposites were successfully prepared by incorporation of two dimensional (2D) RGO nanosheets and spherical silver nanoparticles (NPs) into the 1D TiO2 nanofibers. The novel TiO2/RGO/Ag nanocomposites were synthesized by loading TiO2 nanofibers, prepared via electrospinning technique, on the RGO/Ag platform. The resulting nanocomposites have been characterized using various techniques containing transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultra-violet-visible (UV–vis) spectroscopy. Microscopic studies clearly verified the existence of TiO2 nanofibers with Ag NPs on the surface of RGO sheet and formation of TiO2/RGO/Ag nanocomposites. Moreover, the results of UV–vis spectroscopy demonstrated that TiO2/RGO/Ag nanocomposites extended the light absorption spectrum toward the visible region and significantly enhanced the visible-light photocatalytic performance of the prepared samples on degradation of rhodamine B (Rh. B) as a model dye. It was found that, incorporation of 50 µl RGO/Ag into the TiO2 nanofibers lead to a maximum photocatalytic performance. Also, the improvement of the inactivation of Escherichia coli (E. coli) bacteria under visible-light irradiation was revealed by introduction of RGO/Ag into the TiO2 matrix. The significant enhancement in the photo and bio-activity of TiO2/RGO/Ag nanocomposites under visible-light irradiation can be ascribed to the RGO/Ag content by acting as electron traps in TiO2 band gap.  相似文献   

10.
A series of photo-catalysts were synthesized by neodymium and fluorine doped TiO2, and their characteristics evaluated by X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Neodymium and fluorine doped TiO2 has obvious absorption in the visible light and the absorption edge shifts toward red wavelength. In addition, compared with pure TiO2, the doped catalyst has intense absorption at 528, 587, 750, 808, and 881 nm. The catalytic efficiency was tested by monitoring the photo-catalytic degradation of methylene blue (MB) in visible light and ultraviolet light. The results showed that the optimum doping content was Nd:F:TiO2 = 0.5:5:100 (molar ratio) heat treated at 500 °C, and the reaction rates of MB degradation were estimated to be about 1.76 times and 1.45 times higher than undoped TiO2 in ultraviolet light and visible light.  相似文献   

11.
《Ceramics International》2016,42(14):15209-15216
The effect of annealing temperature on photovoltaic and near-infrared (NIR) detector applications of PbS nanoparticles (NPs) and PbS/graphene nanocomposites was investigated. The products were synthesized by a simple co-precipitation method and graphene oxide (GO) sheets were used as graphene source. Several characterization techniques were used to show transfer of the GO into reduced graphene oxide (rGO) during the synthesis process. In addition, the effect of graphene concentrations on morphology, structure, photovoltaic, and detector parameters of the samples were studied. Transmission electron microscope (TEM) images showed that, the PbS NPs were agglomerated, while, the PbS/rGO nanocomposites were dispersed completely after annealing under H2/Ar gas atmosphere. UV–visible spectrometer showed an absorption peak for all samples in the near infrared red (NIR) region of the electromagnetic spectrum. The results indicated that, photocurrent intensity, responsivity of the samples to an NIR source, and solar-cell efficiency were affected by annealing of samples and graphene concentrations.  相似文献   

12.
BiVO4 crystallites were successfully synthesized by a low-temperature molten salt method. XRD analysis and SEM observation showed that the incorporation of salt medium in the preparing process would greatly lower the formation temperature of BiVO4 phase, and promote their crystallization. UV–vis spectra evidenced their better optical absorption and visible light response than that of TiO2-P25.  相似文献   

13.
Titanium dioxide nanopowders doped with different amounts of Fe ions were prepared by coprecipitation method. Obtained materials were characterized by structural (XRD), morphological (TEM and SEM), optical (UV/vis reflection and photoluminescence, and Raman), and analytical techniques (XPS and ICP-OES). XRD analysis revealed rutile crystalline phase for doped and undoped titanium dioxide obtained in the same manner. Diameter of the particles was 5–7 nm. The presence of iron ions was confirmed by XPS and ICP-OES. Doping process moved absorption threshold of TiO2 into visible spectrum range. Photocatalytic activity was also checked. Doped nanopowders showed normal and up-converted photoluminescence.  相似文献   

14.
《Ceramics International》2019,45(10):12926-12933
The hybrid rGO-TiO2/Co3O4 nanocomposite was successfully synthesized through co-precipitation method. The structural, morphological, compositional and optical properties of the as synthesized nanocomposite were characterized by X-ray diffraction (XRD), Field Emission scanning electron microscopy (FESEM), energy dispersive X-Ray Spectroscopy (EDS), Fourier transformation infrared spectroscopy (FTIR), UV–visible spectrophotometer (UV–vis) and photoluminescence (PL). XRD, EDS and FTIR confirms the existence of rGO-TiO2/Co3O4 in the prepared nanocomposite. FESEM confirms that the TiO2/Co3O4 nanocomposite are adsorbed on the surface of the rGO. UV–Vis and PL spectra revealed that the absorbance and emission occurred at visible region, which greatly supports the photocatalytic dye degradation through the electron-hole separation. The percentage decolorization of methylene blue dye solution was higher with lesser time compared to crystal violet dye. This result concludes that the commercialization of rGO/TiO2/Co3O catalyst may useful for treating various dyes in industries.  相似文献   

15.
《Ceramics International》2016,42(3):4517-4525
One-dimensional spindle-like BiVO4/TiO2 nanofibers heterojunction nanocomposites with high visible light photocatalytic activity have been successfully obtained by combining the electrospinning technique and solvothermal method. The as-obtained products were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis spectra and photoluminescence (PL) spectra. The results revealed that spindle-like BiVO4 nanostructures were successfully grown on TiO2 nanofibers. Photocatalytic tests showed that the BiVO4/TiO2 nanofibers heterojunction nanocomposites showed enhanced visible light photocatalytic activity than that of pure TiO2 nanofibers, which might be attributed to the effective photogenerated electrons-holes separation based on the photosynergistic effect of the BiVO4/TiO2 heterojunction. Moreover, the BiVO4/TiO2 nanofibers heterojunction nanocomposites could be easily recycled without any decrease of the photocatalytic activity.  相似文献   

16.
Nanosized particles of strontium bismuth vanadate SrBi3VO8 were prepared via the Pechini method on the base of citrate‐complexation route. The samples were characterized using X‐ray powder diffraction (XRD), scanning electron microscope (SEM), energy dispersive X‐ray spectra (EDX), X‐ray photoelectron spectroscopic (XPS), and UV–vis absorption spectrum. This bismuth‐containing vanadate presents an efficient absorption in the UV–visible light wavelength region with a narrow band‐gap energy of 2.36 eV and an indirect allowed electronic transition. It is well‐known that hybridization of the 6s and 6p orbitals of Bi3+ could result in lone electron pair and yield some very interesting properties. The photocatalytic activities of SrBi3VO8 nanoparticles were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation in air atmosphere. These results indicate that SrBi3VO8 could be a potential photocatalyst driven by visible light. To understand the charge generation and separation process, the luminescence as well as the decay lifetimes was investigated in the same samples for photocatalysis.  相似文献   

17.
C. Bora  S.K. Dolui 《Polymer》2012,53(4):923-932
A novel route has been developed to synthesize polypyrrole (PPy)/graphene oxide (GO) nanocomposites via liquid/liquid interfacial polymerization where GO and initiator was dispersed in the aquous phase and the monomer was dissolved in the organic phase. The synthesized samples were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), ultraviolet–visible absorption (UV–vis), X-ray diffraction (XRD), electrochemical and electrical conductivity measurements. A good dispersion of the GO sheets within the PPy matrix was observed from the morphological analysis. The composites exhibited noticeable improvement in thermal stability and electrical conductivity in comparison to pure polypyrrole. The composites showed excellent electrochemical reversibility at the scan rate of 0.1 V/s and good cyclic stability even up to 100th cycle. Newly developed graphene oxide based polypyrrole composite could be applied in electrochemical energy storage device.  相似文献   

18.
Polyaniline (PANI)‐Ag nanocomposites were synthesized by in situ chemical polymerization approach using ammonium persulfate and silver nitrate as oxidant. Characterizations of nanocomposites were done by ultraviolet–visible ( UV–vis), Fourier transform infrared (FTIR), X‐ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). UV–vis, XRD and FTIR analysis established the formation of PANI/Ag nanocomposites and face‐centered‐cubic phase of silver. PANInanofibers were of average diameter ~ 30 nm and several micrometers in length. Morphological analysis showed that the spherical‐shaped silver nanoparticles decorate the surface of PANI nanofibers. Silver nanoparticles of average diameter ~ 5–10 nm were observed on the TEM images for the PANI‐Ag nanocomposites. Such type of PANI‐Ag nanocomposites can be used as bistable switches as well as memory devices. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
A series of Al-doped BiOBr microspheres with different Al contents were synthesized via a facile solvothermal method. The as-prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectrometry(EDS), X-ray photoelectron spectroscopy(XPS), N2 adsorption–desorption and UV–visible diffuse reflectance spectroscopy(UV–vis DRS). The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange in an aqueous solution under visible light irradiation. The results revealed that Al doping could greatly improve photocatalytic performance of BiOBr and different Al contents resulted in different photocatalytic activities. The highest activity was achieved by 4 at%Al-BiOBr. The enhanced photocatalytic activity was attributed to efficient separation of photogenerated electron–hole pairs and large BET surface area.  相似文献   

20.
Flower-like SnS2 decorated with MgFe2O4 nanoparticles and reduced graphene oxide (rGO) nanosheets were successfully synthesized by a facile solvothermal method. The morphological and crystal structure results confirmed that MgFe2O4 nanospheres were uniformly anchored on the surface of SnS2 flower-like structure with the decoration of rGO nanosheets. The UV–vis diffuse reflectance spectra indicated that the SnS2–MgFe2O4/rGO photocatalyst had a strong visible light absorption. The sample exhibited the highest photocatalytic activity for the degradation of methylene blue under visible light irradiation. The mechanism of improved photocatalytic activity was finally proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号