首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
The doping of transition metal ions in the up-conversion (UC) luminescent material doped with Yb3+/Ln3+ is a facile way to increase their UC luminescence intensities and alter their colors. In this study, La2MgTiO6:Yb3+/Mn4+/Ln3+ (Ln3+ = Er3+, Ho3+, and Tm3+) phosphors showing excellent luminescence properties were prepared by a solid-state method. The sensitivity of the La2MgTiO6:Yb3+/Ln3+/Mn4+ phosphor was double that without Mn4+, because Mn4+ affects the UC emissions of Ln3+ via energy transfer between these ions. Moreover, Mn4+ also acts as a down-conversion activator, which can combine with UC ions to achieve multi-mode luminescence at different wavelengths. Under 980 nm excitation, these samples emit green light (from Er3+ and Ho3+) and blue light (from Tm3+). In contrast, under 365 nm excitation, they emit red light (from Mn4+). Further testing revealed that the La2MgTiO6:Yb3+/Mn4+/Ln3+ phosphors have potential applications in temperature sensing and anti-counterfeiting.  相似文献   

2.
The upconversion (UC) luminescence of Li+/Er3+/Yb3+ co-doped CaWO4 phosphors is investigated in detail. Single crystallized CaWO4:Li+/Er3+/Yb3+ phosphor can be obtained, co-doped up to 25.0/5.0/20.0 mol% (Li+/Er3+/Yb3+) by solid-state reaction. Under 980 nm excitation, CaWO4:Li+/Er3+/Yb3+ phosphor exhibited strong green UC emissions visible to the naked eye at 530 and 550 nm induced by the intra-4f transitions of Er3+ (2H11/2,4S3/24I15/2). The optimum doping concentrations of Yb3+/Li+ for the highest UC luminescence were verified to be 10/15 mol%, and a possible UC mechanism that depends on the pumping power is discussed in detail.  相似文献   

3.
Self-assembled three-dimensional Yb3+(Ln = Er, Ho, Tm) co-doped Gd2O3 up-converted (UC) phosphors were synthesized by a facile co-precipitation method, and their morphologies and microstructures were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. Under the excitation at 980 nm, spectral pure three primary colors red, green and blue (RGB) emissions were respectively achieved in Yb3+/Er3+, Yb3+/Ho3+ and Yb3+/Tm3+ co-doped Gd2O3 phosphors, in which spectral color purities were tuned by adjusting the doping concentration, annealing temperature, excitation power density and the pulse-width of 980 nm laser. These results provide deeper insights into modulating spectral color purities of up-converted emission, and the potential applications of spectrally pure RGB up-converted materials in fingerprint recognition and multi-color printing were also investigated.  相似文献   

4.
《Ceramics International》2017,43(8):6333-6339
As alternatives to Yb3+-sensitized up-conversion (UC) materials excited at 980 nm, Nd3+-sensitized UC phosphors irradiated by 808 nm have been used to decrease the absorption of water and alleviate the overheating effect in vivo biological application. Intense red and green UC emissions from 5F55I8 and 5F4/5S25I8 transitions of Ho3+ appeared in Nd3+/Yb3+/Ho3+ tri-doped NaLa(MoO4)2 through successive energy transfer Nd3+→Yb3+→Ho3+ under 808 nm excitation, in which Yb3+ ions were proven to be the energy transfer bridge between Nd3+ and Ho3+ by lifetime measurement. The variable emission color and intensity ratios of red to green emissions were realized by adjusting the doping concentration of Yb3+, pulse width of the excitation laser and the addition of Ce3+ ion, which depends on the different population pathways to the green and red emitting states of Ho3+. The chromaticity modulation mechanisms of these approaches were proposed, which provides a feasible strategy to tune the UC emission color.  相似文献   

5.
《Ceramics International》2015,41(8):9910-9915
To obtain warm white-light emission, a series of Ca9MgNa(PO4)7:Sr2+, Mn2+, Ln (Ln=Eu2+, Yb3+, Er3+, Ho3+, and Tm3+) phosphors were designed and their photoluminescence properties under near-ultraviolet and near-infrared excitation were studied. For near-ultraviolet excitation, blue-white emission is produced initially in the Eu2+ single-doped Ca9MgNa(PO4)7, whose excitation band can well match with the near ultraviolet LED chip. By introducing Sr2+ ions into Ca9MgNa(PO4)7:Eu2+, the Eu2+ emission band beyond 500 nm is enhanced obviously. Correspondingly, the emitting light color is tuned to nearly white. To generate warm white light further, Mn2+ is doped into the Ca8.055MgNa(PO4)7:0.045Eu2+, 0.9Sr2+ and the correlated color temperature is decreased largely. For near-infrared excitation, the green, red, and blue emissions have been obtained in the Yb3+-Er3+, Yb3+-Er3+, and Yb3+-Er3+ co-doped Ca9MgNa(PO4)7 phosphors, respectively. And warm white light is also produced in the Ca9MgNa(PO4)7:Yb3+, Er3+, Ho3+, Tm3+ under 980 nm excitation.  相似文献   

6.
《Ceramics International》2017,43(14):10881-10888
A series of co-doped (Yb3+/Er3+): Li2O-LiF-B2O3-ZnO glasses were prepared by standard melt quenching technique. Structural and morphological studies were carried out by XRD and FESEM. Phonon energy dynamics have been clearly elucidated by Laser Raman analysis. The pertinent absorption bands were observed in optical absorption spectra of singly doped and co-doped Yb3+/Er3+: LBZ glasses. We have been observed a strong up-conversion red emission pertaining to Er3+ ions at 1.0 mol% under the excitation of 980 nm. However, the up-conversion and down conversion (1.53 µm) emission intensities were remarkably enhanced with the addition of Yb3+ ions to Er3+: LBZ glasses due to energy transfer from Yb3+ to Er3+. Up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses exhibits three strong emissions at 480 nm, 541 nm and 610 nm which are assigned with corresponding electronic transitions of 2H9/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively. Consequently, the green to red ratio values (G/R) also supports the strong up-conversion emission. The Commission International de E′clairage coordinates and correlated color temperatures (CCT) were calculated from their up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses. The obtained chromaticity coordinates for optimized glass (0.332, 0.337) with CCT value at 5520 K are very close to the standard white colorimetric point in cool white region. These results could be suggested that the obtained co-doped (Yb3+/Er3+): LBZ glasses are promising candidates for w-LEDs applications.  相似文献   

7.
Ho3+/Yb3+ co-doped NaGdTiO4 phosphors were synthesized by a solid-state reaction method. The upconversion (UC) luminescence characteristics excited by 980 nm laser diode were systematically investigated. Bright green UC emission centered at 551 nm accompanied with weak red and near infrared (NIR) UC emissions centered at 652 and 761 nm were observed. The dependence of UC emission intensity on excitation power density showed that all of green, red and NIR UC emissions are involved in two-photon process. The UC emission mechanisms were discussed in detail. Concentration dependence studies indicated that Ho3+ and Yb3+ concentrations had significant influences on UC luminescence intensity and the intensity ratio of the red UC emission to that of the green one. Rate equations were established based on the possible UC mechanisms and a theoretical formula was proposed to describe the concentration dependent UC emission. The UC luminescence properties of the presented material was evaluated by comparing with commercial NaYF4:Er3+, Yb3+ phosphor, and our sample showed a high luminescence efficiency and good color performance, implying potential applications in a variety of fields.  相似文献   

8.
Using a modified sol–gel method, LiLa(MoO4)2: Tm3+/Ho3+/Yb3+ phosphors with tailorable up‐conversion (UC) emission colors were prepared. Under the excitation of a 980 nm laser diode, up‐conversion red and green emissions in Ho3+/Yb3+ co‐doped and blue emission in Tm3+/Yb3+ co‐doped LiLa(MoO4)2 were observed, respectively. The intensities of the RGB (red, green, and blue) emissions could be controlled by varying concentrations of Tm3+ or Ho3+, and the optimal composition was also determined. In Tm3+/Ho3+/Yb3+ co‐doped LiLa(MoO4)2, the UC emission colors could be tuned from blue through white to yellow by adjusting the concentrations of Tm3+ or Ho3+. The UC excitation mechanisms were also investigated based on the power dependence of UC luminescence intensity.  相似文献   

9.
《Ceramics International》2016,42(12):13990-13995
A series of Yb3+/Er3+ codoped transparent oxyfluoride glass ceramics with various amounts of Yb3+ have been successfully fabricated and characterized. Under 980 nm laser prompting, the samples produce intense red, green and blue up-conversion emissions, and the emission intensities increase with Yb3+ concentration and heat treatment temperature. Before losing good transparency in the visible region, optimum emission intensities are obtained for the sample with 25 mol% of Yb3+ at a heat treatment temperature of 680 °C. A possible up-conversion mechanism is proposed from the dependence of emission intensities on pumping power. The fluorescence intensity ratio between the two thermally coupled levels 2H11/2 versus 4S3/2 was measured with the laser output power of 57 mW to avoid the possible laser induced heating effect. The fluorescence intensity ratio values in the temperature range from 295 K to 723 K can be well fitted with the equation: A exp (−∆E/kBT), where A = 6.79 and ∆E=876 cm−1. The relative temperature sensitivity at 300 K was evaluated to be 1.4% K−1. All the results suggest that the Yb3+/Er3+ codoped CaF2 glass ceramics is an efficient up-conversion material with potential in optical fiber temperature sensing.  相似文献   

10.
Novel up‐conversion (UC) luminescent nanopowders, Sr2CeO4:Yb3+,Ln3+ (Ln = Er, Tm, Ho) were prepared with Pechini method. The Sr2CeO4:Yb3+,Ln3+ (Ln = Er, Tm, Ho) nanopowders had an orthorhombic crystal structure, and showed olive‐like morphology with the length of about 260 nm and width of about 130 nm. Under 980 nm lazer excitation, the Sr2CeO4:Yb3+/Er3+, Sr2CeO4:Yb3+/Tm3+, and Sr2CeO4:Yb3+/Ho3+ nanophosphors exhibit strong green, blue, and green UC luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.  相似文献   

11.
Yb3+/Er3+/Tm3+ doped transparent glass ceramic containing orthorhombic YF3 nanoparticles was successfully synthesized by a melt-quenching method. After glass crystallization, tremendously enhanced (about 5000 times) upconversion luminescence, obvious Start-splitting of emission bands as well as long upconversion lifetimes of Er3+/Tm3+ confirmed the incorporation of lanthanide activators into precipitated YF3 crystalline environment with low phonon energy. Furthermore, temperature-dependent upconversion luminescence behaviors of glass ceramic were systematically investigated to explore its possible application as optical thermometric medium. Impressively, both fluorescence intensity ratio of Er3+: 2H11/2  4I15/2 transition to Er3+: 4S3/2  4I15/2 one and fluorescence intensity ratio of Tm3+: 3F2,3  3H6 transition to the combined Tm3+: 1G4  3F4/Er3+: 4F9/2  4I15/2 ones were demonstrated to be applicable as temperature probes, enabling dual-modal temperature sensing. Finally, the thermal effect induced by the irradiation of 980 nm laser was found to be negligible in the glass ceramic sample, being beneficial to gain intense and precise probing signal and detect temperature accurately.  相似文献   

12.
《Ceramics International》2023,49(12):20200-20209
A variety of lanthanide ions doped bismuth titanate (Bi4Ti3O12) luminescent materials with eminent down-conversion (DC) and up-conversion (UC) luminescence performance have been fabricated via a facile sol-gel approach. The XRD, XPS, and EDX elemental mapping results confirm the phase structure of orthorhombic Bi4Ti3O12 (BTO), and the lanthanide activator ions occupy the Bi3+ lattice sites in the BTO crystal. Under UV or NIR excitation, the Eu3+, Yb3+/Ln3+ (Ln = Er, Tm, and Ho) doped Bi4Ti3O12 samples exhibit characteristic red, green, blue, and green emissions. The luminescent mechanisms of the BTO:Eu3+ and BTO:Yb3+/Ln3+ samples are discussed based on the energy level diagrams. The doping concentrations of Eu3+, Yb3+, Er3+, Tm3+, Ho3+ ions and annealing temperature and time are optimized, whose optimal values are determined to be 14, 8, 1, 0.4, 1 mol% and 800 oC, 4 h. The as-obtained LED devices fabricated by Bi4Ti3O12:Eu3+ and Yb3+/Ln3+ phosphors exhibit dazzling multicolor visible light emissions from different Ln3+ ions. The results indicate that the as-obtained Ln3+ doped BTO phosphors may be potentially utilized in LED devices and solid-state lighting. Furthermore, the Eu3+ and Er3+ co-doped BTO samples exhibit different DC and UC luminescence spectral profiles when excited at various UV, visible, or NIR wavelengths, revealing their eminent feasibility and great potential in anti-counterfeiting applications.  相似文献   

13.
《Ceramics International》2016,42(5):5635-5641
A series of Yb3+ ions sensitized NaY(WO4)2:Er3+ phosphors were synthesized through a solid-sate reaction method. The X-ray diffraction (XRD), upconversion (UC) emission and cathodoluminescence (CL) measurments were applied to characterize the as-prepared samples. Under the excitation of 980 nm light, bright green UC emissions corresponding to (2H11/2,4S3/2)→4I15/2 transitions of Er3+ ions were observed and the UC emission intensities showed an upward trend with increasing the Yb3+ ion concentration, achieving its optimum value at 25 mol%. Furthermore, the temperature sensing behavior based on the thermally coupled levels (2H11/2,4S3/2) of Er3+ ions was analyzed by a fluorescence intensity ratio technique. It was found that the obtained samples can be operated in a wide temperature range of 133–773 K with a maximum sensitivity of approximately 0.0112 K−1 at 515 K. Ultimately, strong CL properties were observed in NaY(WO4)2:0.01Er3+/0.25Yb3+ phosphors and the CL emission intensity increased gradually with the increment of accelerating voltage and filament current.  相似文献   

14.
《Ceramics International》2017,43(12):8879-8885
The present paper focuses on near infrared (NIR) down-conversion photoluminescence (PL) properties by studying the energy transfer mechanism between Er3+ and Yb3+ in CaMoO4:Er3+, Yb3+ phosphors. We have successfully synthesized a series of Er3+ doped and Yb3+ codoped CaMoO4 phosphors by hydrothermal method. The down-conversion of Er3+-Yb3+ combination with CaMoO4 phosphor is designed to overcome the energy losses due to spectral mismatch when a high energy photon is incident on the Si-solar cell. The XRD, FESEM, EDX, PL, UV–Vis, Lifetime measurements were carried out to characterize the prepared down-converting phosphors. The crystallinity and surface morphology were studied by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The down-conversion PL spectra have been studied using 380 nm excitation wavelength. The Er3+ doped phosphors exhibit hypersensitive emission at 555 nm in the visible region due to 4S3/24I15/2 transition. The addition of Yb3+ into Er3+ doped CaMoO4 attribute an emission at 980 nm due to 2F5/22F7/2 transition. The decrease in emission intensity in visible region and increase in NIR region reveals the energy transfer from Er3+ to Yb3+ through cross relaxation. The UV–Vis–NIR spectra shows the strong absorption peak around 1000 nm due to Yb3+ ion. The lifetime measurement also reveals the energy transfer from Er3+ to Yb3+ ions. The maximum value of energy transfer efficiency (ETE) and corresponding theoretical internal quantum efficiency are estimated as 74% and 174% respectively.  相似文献   

15.
《Ceramics International》2017,43(16):13505-13515
ZnO-TiO2 composites co-doped with Er3+ and Yb3+ ions were successfully synthesized by powder-solution mixing method and their upconversion (UC) luminescence was evaluated. The effect of firing temperature, ZnO/TiO2 mixing ratio, and dopant concentration ranges on structural and UC luminescence properties was investigated. The crystal structure of the product was studied and calculated in detail by means of X-ray diffraction (XRD). Also, the site preference of Er3+ and Yb3+ ions in the host material was considered and analyzed based on XRD results and UC luminescence characteristics. Brightest UC luminescence was observed in the ZnO-TiO2:Er3+,Yb3+ phosphor fired at 1300 °C in which the system consisted of mixed phases; Zn2TiO4, TiO2, RE2Ti2O7 and RE2TiO5 (RE = Er3+ and/or Yb3+). Under the excitation of a 980 nm laser, the two emission bands were detected in the UC emission spectrum, weak green band centered at 544 and 559 nm, and strong red band centered at 657 and 675 nm wavelengths in accordance with 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+ ion, respectively. The simple chemical formula equations, for explaining the site preference of Er3+ and Yb3+ ions in host crystal matrix, were generated by considering the Zn2TiO4 crystal structure, its crystal properties, and the effect of Er3+ and Yb3+ ions to the host crystal matrix. The UC emission intensity of the products was changed by varying ZnO/TiO2 mixing ratios, and Er3+ and Yb3+ concentrations. The best suitable condition for emitting the brightest UC emission was 1ZnO:1TiO2 doped with 3 mol% Er3+, 9 mol% Yb3+ fired at 1300 °C for 1 h.  相似文献   

16.
Hexagonal Ho3+ doped NaYbF4 phosphors are synthesized via a hydrothermal method. The influence of Gd3+ and Ce3+ content on the phase structure and upconversion (UC) emission of NaYbF4 phosphors is investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UC spectra. The results of XRD and TEM indicate that the solubility of Ce3+ in hexagonal NaYbF4 is low due to the large difference of ionic radius between Ce3+ and Yb3+. With help of Gd3+ co-doping (15 mol%), pure hexagonal NaYbF4 phosphors with high doping concentration of Ce3+ (15 mol%) and small crystal size are obtained. When excited by a 980 nm laser diode, Ho3+ doped hexagonal NaYb0.85Gd0.15F4 phosphors exhibit strong green UC emission at 540 nm and weak red one at 646 nm. UC luminescence tuning from green emission to red emission is observed in hexagonal Ho3+ doped NaYb0.85Gd0.15F4 phosphors by co-doping with Ce3+ ions. The UC luminescence tuning phenomenon is attributed to two resonant energy transfer processes of 5S2/5F4(Ho3+)+2F5/2(Ce3+)→5F5(Ho3+)+5F7/2(Ce3+) and 5I6(Ho3+)+2F5/2(Ce3+)→5I7(Ho3+)+5F7/2(Ce3+) between Ho3+ and Ce3+, which suppress the green emission at 540 nm, while promote the red one at 646 nm.  相似文献   

17.
《Ceramics International》2023,49(8):11829-11836
Fluorescence temperature measurement technology has set off another upsurge in non-contact temperature measurement, but still suffers from the large error for single-mode thermometry. Herein, in a broad temperature range of 93–633 K, a dual-mode modulation thermometry based on up-conversion phosphor of GaNbO4:Yb3+/Er3+ is realized with the maximum relative sensitivity (Sr) of 11.7% K−1 (93 K) and 13.1% K−1 (123 K), respectively. GaNbO4:Yb3+/Er3+ phosphors were synthesized by high temperature solid-state method. The structure, surface morphology and the optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The fluorescence intensity ratio (FIR) readout method based on Er3+ thermal-coupled energy level (TCL) and non-thermal-coupled energy level (NTCL) was used to achieve the dual-mode temperature measurement with high temperature resolution and good repeatability in GaNbO4:5 mol% Yb3+ and 5 mol% Er3+ phosphors. All the results show that GaNbO4:Yb3+/Er3+ phosphors have great application potential in high sensitivity broadband thermometry.  相似文献   

18.
Up-conversion luminescent (UCL) materials are excellent candidate for optical anti-counterfeiting and the exploitation of multi-wavelength NIR light triggered UC phosphors with tunable color emission is essential for reliable anti-counterfeiting technology. Herein, a series of lanthanide ions (Er3+, Er3+–Ho3+, and Yb3+–Tm3+) doped BaTiO3 submicrometer particles are synthesized through a modified hydrothermal procedure. XRD and SEM measurements were carried out to identify the structure and morphology of the samples and their UCL properties under 808, 980, and 1550 nm NIR excitation are investigated. Er3+ singly doped sample exhibits Er3+ concentration-dependent and excitation wavelength-dependent emission color from green to yellow and orange. The corresponding UC mechanisms under three NIR light excitation are clarified. Pure red emission under 1550-nm excitation was obtained by introducing small amount of Ho3+ and the fluorescent lifetime test was used to confirm the energy transfer from Er3+ to Ho3+. In addition, Yb3+–Tm3+ co-doped sample shows intense blue emission from 1G4 → 3H6 transition of Tm3+ under 980-nm excitation. As a proof of concept, the designed pattern using phosphors with red, green, and blue three primary color emissions under 1550, 808, and 980 nm NIR excitation was displayed to demonstrate their anti-counterfeiting application.  相似文献   

19.
《Ceramics International》2022,48(21):31344-31353
Highly thermally stable Er3+/Tm3+/Yb3+ tri-doped bismuth lanthanum tungstate phosphors were prepared by high temperature solid-state reaction method. The structural and morphological properties of the prepared phosphors were analysed by X-ray diffraction (XRD), Raman spectroscopy and Scanning electron microscopy (SEM) coupled with energy dispersion spectrum (EDS). Visible upconversion (UC) luminescence was measured by exciting the phosphors with 980 nm laser radiation. The dependence of the UC intensity of each emission band of Er3+ and Tm3+ ions as a function of temperature in the range from 30 to 300 K was monitored. Fluorescence intensity ratios (FIR) of thermally coupled levels (TCL) and non-thermally coupled levels (NTCL) were analysed and verified with appropriate theoretical validation. The absolute (SA) and relative sensitivities (SR) were estimated and compared with the reported systems. In the present case of BiLaWO6: Er3+/Tm3+/Yb3+, SR (0.43 % K?1) related to TCL of Er3+ UC is found to have maximum sensitivity compared to any of the NTCL combinations at 300 K. From this study we inferred that the SR values estimated from NTCL are smaller than that of TCL involved in BLW: Er3+/Tm3+/Yb3+ phosphor. The temperature dependent CIE color coordinates were also evaluated in the cryogenic temperature region.  相似文献   

20.
《Ceramics International》2023,49(6):9574-9583
Here we adopt trivalent lanthanide (Ln3+ = Er3+, Er3+/Ho3+, and Yb3+/Tm3+) doped Sr2LaNbO6 (SLNO) as novel upconversion luminescence (UCL) materials for achieving UCL and optical temperature sensing under 980 nm excitation. Specifically, Er3+ single doped Sr2LaNbO6 phosphors present bright high-purity green emission under the 980 nm excitation. While co-doping with the Ho3+ ions, the component of red emission from Er3+ ions increases significantly and sample show a remarkable enhancement of luminescent intensity relative to SLNO:Er3+ sample. The above-mentioned phosphors and Yb3+/Tm3+ co-doped phosphor (blue emission) successfully achieve high-purity trichromatic UCL and mixed white light output in the same host. Furthermore, the temperature sensing performance of the SLNO:Er3+/Ho3+ phosphor based on the fluorescence intensity ratio (FIR) is systematically studied for the first time. The temperature sensing based on the non-thermal coupling levels (NTCLs) exhibit higher sensitivity than that based on the thermal coupling levels (TCLs). The maximum absolute and relative sensitivity for 4F9/2/4I9/2 NTCLs reach 0.16803 K?1 at 427 K and 0.01591 K?1 at 641 K, respectively. Interestingly, NIR emission of 4I9/2 → 4I15/2 transition presents a thermal enhancement, while visible emissions show thermal quenching. These results indicate that the Ln3+ doped Sr2LaNbO6 UCL phosphors have potential applications in the fields of non-contact temperature sensors, full-color displays, and anti-counterfeiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号