首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(3):3345-3352
The luminescent characteristics of spherical titanium dioxide (TiO2) nanoparticles (NP's) doped with Sm3+/Yb3+ and Tm3+/Yb3+ with and without a silica coating were analyzed. These nanoparticles were synthesized using the spray pyrolysis technique and coated with silica through a wet chemical process. The Sm3+/Tm3+ and Yb3+ doping induces a triphasic poly-crystalline structure of rutile and anatase TiO2 and a Sm2Ti2O7/Tm2Ti2O7 cubic phase. A Williamson-Hall analysis was used to monitor the tensions of the NP's crystallites at the various doping concentrations and with addition of the silica shell. The luminescent spectra presented the characteristic emission peaks for the electronic energy levels transitions of the Sm3+/Tm3+ and Yb3+ ions. The Sm3+/Yb3+ co-doped NP's showed a maximum emission peak in the visible region at 612 nm, associated with 4G5/26H7/2 transitions of the Sm3+ ions. The IR emission peak at 973 nm (2F5/22F7/2) pertaining to Yb3+. For the combination of Tm3+/Yb3+, two emissions associated with Tm3+ ions were observed at 440 nm (1D23F4) and 806 nm (3H43H6). The emission at 973 nm (2F5/22F7/2) is correlated to the Yb3+ ions. Silica coating of the NP's resulted in luminescence emission intensity increase of about 4 times.  相似文献   

2.
《Ceramics International》2017,43(8):6333-6339
As alternatives to Yb3+-sensitized up-conversion (UC) materials excited at 980 nm, Nd3+-sensitized UC phosphors irradiated by 808 nm have been used to decrease the absorption of water and alleviate the overheating effect in vivo biological application. Intense red and green UC emissions from 5F55I8 and 5F4/5S25I8 transitions of Ho3+ appeared in Nd3+/Yb3+/Ho3+ tri-doped NaLa(MoO4)2 through successive energy transfer Nd3+→Yb3+→Ho3+ under 808 nm excitation, in which Yb3+ ions were proven to be the energy transfer bridge between Nd3+ and Ho3+ by lifetime measurement. The variable emission color and intensity ratios of red to green emissions were realized by adjusting the doping concentration of Yb3+, pulse width of the excitation laser and the addition of Ce3+ ion, which depends on the different population pathways to the green and red emitting states of Ho3+. The chromaticity modulation mechanisms of these approaches were proposed, which provides a feasible strategy to tune the UC emission color.  相似文献   

3.
Transparent glass ceramics containing YF3 nano-crystals were fabricated by heat treatment of the SiO2–Al2O3–NaF–YF3–LnF3 (Ln = Er, Yb) glasses. X-ray diffraction and transmission electron microscopy analyses evidenced the homogeneous distribution of spherical YF3 nano-crystals sized 25–30 nm among the glassy matrix. Energy dispersive X-ray spectroscopy measurement, combined with the Stark splitting of the absorption and emission bands, verified the incorporation of Er3+ and Yb3+ ions into YF3 nano-crystals. The infrared to visible up-conversion emission of Er3+ intensified with the increasing of Yb3+ concentration, ascribing to the increase of the efficiency of non-radiative energy transfer from Yb3+ to Er3+ which exceeded 45% for the 0.5Er3+/1.0Yb3+ co-doped sample. The up-conversion luminescence at 545 and 660 nm were affirmed coming from two-photon excitation process.  相似文献   

4.
《Ceramics International》2017,43(14):10881-10888
A series of co-doped (Yb3+/Er3+): Li2O-LiF-B2O3-ZnO glasses were prepared by standard melt quenching technique. Structural and morphological studies were carried out by XRD and FESEM. Phonon energy dynamics have been clearly elucidated by Laser Raman analysis. The pertinent absorption bands were observed in optical absorption spectra of singly doped and co-doped Yb3+/Er3+: LBZ glasses. We have been observed a strong up-conversion red emission pertaining to Er3+ ions at 1.0 mol% under the excitation of 980 nm. However, the up-conversion and down conversion (1.53 µm) emission intensities were remarkably enhanced with the addition of Yb3+ ions to Er3+: LBZ glasses due to energy transfer from Yb3+ to Er3+. Up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses exhibits three strong emissions at 480 nm, 541 nm and 610 nm which are assigned with corresponding electronic transitions of 2H9/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 respectively. Consequently, the green to red ratio values (G/R) also supports the strong up-conversion emission. The Commission International de E′clairage coordinates and correlated color temperatures (CCT) were calculated from their up-conversion emission spectra of co-doped (Yb3+/Er3+): LBZ glasses. The obtained chromaticity coordinates for optimized glass (0.332, 0.337) with CCT value at 5520 K are very close to the standard white colorimetric point in cool white region. These results could be suggested that the obtained co-doped (Yb3+/Er3+): LBZ glasses are promising candidates for w-LEDs applications.  相似文献   

5.
《Ceramics International》2023,49(13):21932-21940
Due to the non-contact and high sensitivity, optical thermometry based on rare earth doped phosphors has been paid much attention to. Herein, dual-mode optical thermometers are designed using up-conversion luminescence of Er3+/Ho3+-Yb3+ doped LaNbO4 phosphors, which were synthesized for the first time by high-temperature solid-state reaction method. The LaNbO4:1Er3+:10Yb3+ and LaNbO4:1Ho3+:10Yb3+ phosphors exhibit reliable and excellent thermometric performance by combining fluorescence intensity ratio and decay lifetime for self-calibration. Specifically, the maximal relative sensitivities based on fluorescence lifetime were 0.27 %K−1 and 0.33 %K−1 for LaNbO4:1Er3+:10Yb3+ and LaNbO4:1Ho3+:10Yb3+ phosphors, respectively. The maximal relative sensitivity is 1.12 %K−1 when using intensity ratio between thermal coupling energy levels in LaNbO4:1Er3+:10Yb3+ as a detecting signal. Furthermore, the maximal relative sensitivity reaches as high as 0.98 %K−1 when taking advantage of special non-thermal coupling energy levels in LaNbO4:1Ho3+:10Yb3+. These results indicate that Er3+/Ho3+-Yb3+ doped LaNbO4 phosphors possess great potential in self-calibrated optical thermometric techniques.  相似文献   

6.
《Ceramics International》2022,48(10):14091-14097
Particle size is a critical parameter in up-conversion luminescence tuning and application research. In this study, CeO2:Yb3+/Er3+ nanospheres were synthesized via coprecipitation. The average size of these nanospheres gradually decreased as the Yb3+ doping concentration increased, which might be attributed to the influence of Yb3+ doping on the growth rate of nanospheres by surface charge repulsion. Upon exciting these nanospheres using a 980-nm laser, the corresponding up-conversion red-green emission intensity ratio gradually increased as the Yb3+ doping concentration increased, which might be ascribed to two reasons: the strengthened 4S3/2 → 4F9/2 nonradiative relaxation process and the enhanced Er3+ → Yb3+ energy back-transfer process. To assess the influence of the nonradiative relaxation process on the up-conversion emission red-green ratios, the down-conversion emission spectra and decay curves of CeO2:x%Yb3+/2%Er3+ nanospheres that were excited by a 520 nm laser were investigated. To validate how the particle size affects the up-conversion emission, CeO2:x%Lu3+/2%Yb3+/2%Er3+ nanospheres of various sizes were synthesized by substituting optically active Yb3+ using optically inert Lu3+. The corresponding up-conversion emission spectra and decay curves were investigated. The experimental results enhanced our understanding of how lanthanide doping affects the up-conversion luminescence tuning of Er3+, offering great potential to regulate the morphology and optical properties of the up-conversion luminescence nanoparticles.  相似文献   

7.
《Ceramics International》2016,42(12):14086-14093
Sm3+ singly doped NaGd(MoO4)2 and Sm3+, Eu3+ co-doped NaGd(MoO4)2 phosphors by using sodium citrate as chelating agent were synthesized via hydrothermal method. The structure and morphology were characterized by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). During the synthesis process, the Na3Cit concentration plays a crucial role in determining the morphology and particle size of the products. The optimal doping concentration in Sm3+ singly doped NaGd(MoO4)2 phosphor was confirmed. The relevant parameters of energy transfer in the NaGd(MoO4)2: Sm3+, Eu3+ phosphors have been calculated based on the fluorescent dynamic analysis. Finally, on the analysis of luminescent spectra and fluorescent dynamics, the main energy transfer mechanism between Sm3+ and Eu3+ in NaGd(MoO4)2 phosphor is confirmed to be electric dipole-dipole interaction, and energy transfer pathway is from 4G5/2 state of Sm3+ to 5D0 state of Eu3+ rather than 5D1 of Eu3+ ions.  相似文献   

8.
Non-contact temperature sensors based on the fluorescence intensity ratio (FIR) have been widely investigated owing to their high sensitivity and reliable real-time monitoring. Herein, the SiO2-coated LiY(MoO4)2@SiO2:Er3+,Yb3+ phosphor was investigated as an optical thermometry material, which was synthesized using the conventional solid state reaction and coated by a facile wet chemical route. The effect of surface modification on FIR was systematically characterized by structural analyses and spectral measurements and the temperature-dependent up-conversion FIR was investigated from 303 to 603 K under a 980 nm laser excitation. The results showed that the FIR value was thermally stable and the SiO2 coating led to a higher FIR sensitivity as well as a higher saturation threshold. This work would pave a way to design interesting optical thermometry materials in up-conversion phosphors with better properties.  相似文献   

9.
Upconversion (UC) optical thermometers using the fluorescence intensity ratio (FIR) technique arising from the thermally coupled energy levels (TCLs) are still suffering from low sensitivity owing to the restriction of small energy gap. In the present study, a strategy to strive for superior temperature sensitivity and signal discriminability is employed with the help of non-thermally coupled energy levels (NTCLs). A novel tri-doped Ba3Y4O9: Ho3+/Tm3+/Yb3+ phosphor with rhombohedral symmetry was successfully prepared via a solid-state reaction method, and the temperature sensing performance was evaluated by analyzing temperature-dependent upconversion emission spectra. The emission intensities of both Ho3+ and Tm3+ activators can be almost completely restored to their original values when the temperature of the sample is cooled to room temperature. The temperature-dependent FIR between NTCLs can be fitted well by a derived three-term equation with the correlation coefficient above 99.6%, and the FIR of NTCLs exhibits high temperature sensitivity over a wide temperature range owing to the different temperature responses of the NTCLs. The maximum absolute sensitivity SA and relative sensitivity SR values reaches as high as 0.0552?K?1 and 1.49% K?1, respectively, which are much higher than those of the previously reported bulk UC optical temperature sensing materials. Moreover, the emission bands of NTCLs are well separated, which endows the material a good signal discriminability for temperature detection. Excellent temperature sensing performance is also demonstrated in Er3+/Tm3+/Yb3+ tri-doped Ba3Y4O9, evidencing the validity of this strategy. These results indicate that the present UC materials can be potential candidates for optical temperature sensors, and the present strategy will provide a thought for developing other innovative UC temperature sensing materials.  相似文献   

10.
Using a modified sol–gel method, LiLa(MoO4)2: Tm3+/Ho3+/Yb3+ phosphors with tailorable up‐conversion (UC) emission colors were prepared. Under the excitation of a 980 nm laser diode, up‐conversion red and green emissions in Ho3+/Yb3+ co‐doped and blue emission in Tm3+/Yb3+ co‐doped LiLa(MoO4)2 were observed, respectively. The intensities of the RGB (red, green, and blue) emissions could be controlled by varying concentrations of Tm3+ or Ho3+, and the optimal composition was also determined. In Tm3+/Ho3+/Yb3+ co‐doped LiLa(MoO4)2, the UC emission colors could be tuned from blue through white to yellow by adjusting the concentrations of Tm3+ or Ho3+. The UC excitation mechanisms were also investigated based on the power dependence of UC luminescence intensity.  相似文献   

11.
《Ceramics International》2023,49(18):29682-29689
High-quality cubic YSZ crystals were designed with various contents of Er3+, Tm3+ and Yb3+ to produce white light emission, and grown by the optical floating zone method. The up-conversion luminescence spectra of the crystals under 980 nm laser irradiation show three distinct groups of emission peaks at ∼473 nm (blue) generated by the Tm3+ 1G43H6 transition, 531 and 547 nm (green) from the Er3+ 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions, and 640 and 662 nm (red) from the Er3+ 4F9/2 → 4I15/2 transition. The optical power curve obtained by plotting the up-conversion luminescence intensity against the laser power shows that the blue emission involves a three-photon process, whilst both the green and red emissions are the results of two-photon processes. Overall white light emission was observed with the crystal prepared with 0.05 mol% Er2O3, 0.5 mol% Tm2O3 and 2.0 mol% Yb2O3, and this crystal is suitable for use in highly efficient white light emission devices.  相似文献   

12.
《Ceramics International》2017,43(5):4330-4334
Yb2O3:Ho3+ nanocrystalline powders were synthesized through a solid state reaction method. X-ray diffraction analysis and field emission scanning electron microscopy were used to analyze the phase composition and morphology of the powders. Then under the 980 nm excitation of laser diode, the fluorescence of the crystals was studied via a fluorescence spectrometer. The green and red emissions centered on 551 and 668 nm were observed, and the green band dominated the emission spectrum. The effect of the concentration of Ho3+ on the upconversion luminescence intensity was discussed and the possible upconversion emission mechanism was explained. It indicates that like other metal oxide nanoparticles, Yb2O3 could also be a potential host material for doping to prepare the upconversion phosphor.  相似文献   

13.
《Ceramics International》2023,49(4):6459-6469
The Ba3Y2–xErx(BO3)4 (х = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) phosphors were obtained by crystallization from a melt. The Ba3Y2(BO3)4 crystal structure was refined from single crystal X-ray diffraction data to R = 0.037. Its anisotropic atomic displacement parameters for all atoms were refined for the first time. The borate crystallizes in the orthorhombic crystal system, space group Pnma with unit cell parameters a = 7.673(1), b = 16.44(1), c = 8.977(2) Å, V = 1132.3(3) Å3, Z = 4. These phosphors are isotypical to those of the A3M2(BO3)4 (A = Ca, Sr, Ba, M = Ln, Y, Bi) family. The crystal structure contains the isolated BO3 triangles, two general and a special one independent crystallographic sites for large cations, which are disordered over sites. Thermal behavior of Ba3Y2(BO3)4 was investigated by high-temperature X-ray powder diffraction and thermal expansion coefficients are calculated in a wide temperature range. An inflections of temperature dependencies of the unit cell parameters is observed in a range 600–740 °C. Luminescence spectra, excitation and kinetic curves of the Ba3Y2(BO3)4:Er3+ series are reported. A maximum luminescence intensity is observed for the x = 0.1 sample. According to vibrational spectroscopy data no structural changes upon activation of the Ba3Y2(BO3)4 matrix with the Er ions are observed.  相似文献   

14.
《Ceramics International》2016,42(5):5737-5742
The novel red-emitting Eu3+ ions activated CaGd2(MoO4)4 phosphors were prepared by a citrate sol–gel method. The X-ray diffraction patterns confirmed their tetragonal structure when the samples were annealed above 600 °C. The photoluminescence excitation spectra of CaGd2(MoO4)4:Eu3+ phosphors exhibited the charge transfer band (CTB) and intense f–f transitions of Eu3+ ion. The optimized annealing temperature and Eu3+ ion concentration were analyzed for CaGd2(MoO4)4:Eu3+ phosphors based on the dominant red (5D07F2) emission intensity under NUV (394 nm) excitation. All decay curves were well fitted by the single exponential function. These luminescent powders are expected to find potential applications such as WLEDs and optical display systems.  相似文献   

15.
《Ceramics International》2017,43(9):6751-6757
A series of NaY(WO4)2:Sm3+ phosphors were prepared by high temperature solid state reaction. When excited by ultraviolet and blue light, their emission spectra cover entirely visible light region, due to intrinsic luminescence of WO42- group as well as Sm3+ 4f-4f transitions. White light emission was obtained from NaY0.99Sm0.01(WO4)2 phosphor under radiation of 265 nm UV light, and intense yellow and red emission from 6HJ(J=5/2, 7/2, 9/2) transitions were observed when pumped Sm3+ 4G5/2 by 405 nm blue light. With incorporation of Sm3+ into NaY(WO4)2 host, higher-level emission from Sm3+ at 650 nm was generated by energy transfer from WO42- to Sm3+ under excitation of 265 nm. The corresponding energy transfer mechanism was demonstrated to be a dipole-dipole interaction. In addition, tunable emission from blue to white and, finally, to red was realized by increasing Sm3+ doping concentration. The band gap of NaY(WO4)2 calculated from diffuse reflection spectra indicates a semiconducting character. All these results show that NaY1−xSmx(WO4)2 phosphor provides promising application for conversion of frequencies emitted by UV or blue LEDs.  相似文献   

16.
Single-phase (Bi1−xPrx)(Fe1−xTix)O3 ceramics (x=0.03, 0.06, and 0.10 as BPFT-3, BPFT-6 and BPFT-10, respectively) were synthesized by conventional solid state reaction method. The effect of varying Pr and Ti codoping concentration on the structural, magnetic, dielectric and optical properties of the BPFT ceramics have been investigated. X-ray diffraction indicated pure rhombohedral phase formation for BPFT-3 and BPFT-6 ceramics, however, a structural phase transition from a rhombohedral to an orthorhombic phase has been observed for BPFT-10 ceramic. The maximum remnant magnetization of 0.1824 emu/g has been observed in BPFT-6. With increasing codoping concentration the room temperature dielectric measurements showed enhancement in dielectric properties with reduced dielectric loss. UV–vis diffuse reflectance spectra demonstrated the strong absorption of light in the visible region for a band gap variation 2.31–2.34 eV. Infrared spectroscopy indicated the shifting of Bi/Pr–O and Fe/Ti–O bonds vibrations and change in Fe/Ti–O bond lengths. Decrease in the conductivity on increasing Pr and Ti concentration in BFO is attributed to an enhancement in the barrier properties leading to suppression of lattice conduction path arising due to lattice distortion as confirmed from impedance analysis.  相似文献   

17.
《Ceramics International》2023,49(8):11829-11836
Fluorescence temperature measurement technology has set off another upsurge in non-contact temperature measurement, but still suffers from the large error for single-mode thermometry. Herein, in a broad temperature range of 93–633 K, a dual-mode modulation thermometry based on up-conversion phosphor of GaNbO4:Yb3+/Er3+ is realized with the maximum relative sensitivity (Sr) of 11.7% K−1 (93 K) and 13.1% K−1 (123 K), respectively. GaNbO4:Yb3+/Er3+ phosphors were synthesized by high temperature solid-state method. The structure, surface morphology and the optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The fluorescence intensity ratio (FIR) readout method based on Er3+ thermal-coupled energy level (TCL) and non-thermal-coupled energy level (NTCL) was used to achieve the dual-mode temperature measurement with high temperature resolution and good repeatability in GaNbO4:5 mol% Yb3+ and 5 mol% Er3+ phosphors. All the results show that GaNbO4:Yb3+/Er3+ phosphors have great application potential in high sensitivity broadband thermometry.  相似文献   

18.
《Ceramics International》2016,42(12):13990-13995
A series of Yb3+/Er3+ codoped transparent oxyfluoride glass ceramics with various amounts of Yb3+ have been successfully fabricated and characterized. Under 980 nm laser prompting, the samples produce intense red, green and blue up-conversion emissions, and the emission intensities increase with Yb3+ concentration and heat treatment temperature. Before losing good transparency in the visible region, optimum emission intensities are obtained for the sample with 25 mol% of Yb3+ at a heat treatment temperature of 680 °C. A possible up-conversion mechanism is proposed from the dependence of emission intensities on pumping power. The fluorescence intensity ratio between the two thermally coupled levels 2H11/2 versus 4S3/2 was measured with the laser output power of 57 mW to avoid the possible laser induced heating effect. The fluorescence intensity ratio values in the temperature range from 295 K to 723 K can be well fitted with the equation: A exp (−∆E/kBT), where A = 6.79 and ∆E=876 cm−1. The relative temperature sensitivity at 300 K was evaluated to be 1.4% K−1. All the results suggest that the Yb3+/Er3+ codoped CaF2 glass ceramics is an efficient up-conversion material with potential in optical fiber temperature sensing.  相似文献   

19.
Yb3+/Er3+/Tm3+ doped transparent glass ceramic containing orthorhombic YF3 nanoparticles was successfully synthesized by a melt-quenching method. After glass crystallization, tremendously enhanced (about 5000 times) upconversion luminescence, obvious Start-splitting of emission bands as well as long upconversion lifetimes of Er3+/Tm3+ confirmed the incorporation of lanthanide activators into precipitated YF3 crystalline environment with low phonon energy. Furthermore, temperature-dependent upconversion luminescence behaviors of glass ceramic were systematically investigated to explore its possible application as optical thermometric medium. Impressively, both fluorescence intensity ratio of Er3+: 2H11/2  4I15/2 transition to Er3+: 4S3/2  4I15/2 one and fluorescence intensity ratio of Tm3+: 3F2,3  3H6 transition to the combined Tm3+: 1G4  3F4/Er3+: 4F9/2  4I15/2 ones were demonstrated to be applicable as temperature probes, enabling dual-modal temperature sensing. Finally, the thermal effect induced by the irradiation of 980 nm laser was found to be negligible in the glass ceramic sample, being beneficial to gain intense and precise probing signal and detect temperature accurately.  相似文献   

20.

Abstract

Powders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties.

PACS

42.70.-a, 78.55.Hx, 78.60.-b  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号