首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Ceramics International》2017,43(5):4309-4313
A combination of high-energy ball milling and constant pressure chemical vapor deposition was used to prepare carbon-coated SiO/ZrO2 composites. It was found that the as-prepared composites were composed of amorphous carbon, amorphous SiO, and paracryslalline ZrO2. The electrochemical analysis results revealed excellent electrochemical performances for the composites, including a high initial discharge capacity (1737 mA h g−1), a remarkable cyclic stability (reversible capacity of 721 mA h g−1 at 800 mA g−1, after 100 cycles), and a good rate capability (870 mA h g−1 at 800 mA g−1). These features demonstrate that these composites are promising alternative candidates for high-efficiency electrode materials of Li-ion batteries.  相似文献   

2.
《Ceramics International》2017,43(2):1688-1694
In this work, we report synthesis of SnO2@MnO2 nanoflakes grown on nickel foam through a facile two-step hydrothermal route. The as-obtained products are characterized by series of techniques such as scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The as-obtained SnO2@MnO2 nanoflakes are directly used as supercapacitor electrode materials. The results show that the electrode possesses a high discharge areal capacitance of 1231.6 mF cm−2 at 1 mA cm−2 and benign cycling stability with 67.2% of initial areal capacitance retention when the current density is 10 mA cm−2 after 6000 cycles. Moreover, the heterostructured electrode shows 41.1% retention of the initial capacitance when the current densities change from 1 to 10 mA cm−2, which reveals good rate capability. SnO2@MnO2 nanoflakes products which possess excellent electrochemical properties might be used as potential electrode materials for supercapacitor applications.  相似文献   

3.
《Ceramics International》2017,43(8):6232-6238
Uniform Nb2O5 nanospheres/surface-modified graphene (SMG) composites for anode materials in lithium ion batteries were synthesized by hydrothermal method. The microstructure and morphology of composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscope techniques. The experimental results showed that Nb2O5 nanospheres were tightly and uniformly grown on the surface of SMG nanosheets. Nb2O5 nanospheres/SMG composites exhibited an impressive reversible capacity of 404.6 mA h g−1 at the current density of 40 mA g−1 after 100 cycles, and an excellent rate capacity of 345.5 mA h g−1 at the current density of 400 mA g−1.  相似文献   

4.
The polydopamine-assisted hierarchical composites of ultrathin NiO nanosheets uniformly coating on the surface of hollow nitrogen-doped carbon spheres (HNCS-NiO) were successfully fabricated via a facile synthesis method. The hierarchical HNCS-NiO composites as electrode materials for supercapacitors exhibit high capacitance of 550.4 F g 1 (880.6 mF cm 2) at the current density of 0.5 A g 1 (0.8 mA cm 2), and present a good rate capability. The composites display excellent improved electrochemical properties not only because their hierarchical hollow nanostructures can provide enough space to buffer the volume expansion during the reversible intercalation/deintercalation processes, but also because their larger specific surface areas can provide adequate active sites for the redox electrochemical reaction.  相似文献   

5.
《Ceramics International》2017,43(15):11967-11972
Stabilizing the layer structures of Mo-based anode materials is still a challenge for Li ion batteries. Herein, we proposed an electrochemical presodiation strategy for MoS2 and MoO3 to improve their cycling stability. It is interesting to note that the cycling stability of as-treated MoS2 and MoO3 was significantly improved. Although the reversible discharge capacity was slightly decreased, the capacity of the pretreated MoS2 at 300 mA g−1 was retained at 345 mA h g−1 after 100 cycles while that of the pristine one decreased to 151 mA h g−1. The capacity of the pretreated MoO3 after 60 cycles was also improved from 275 mA h g−1 (the pristine one) to 460 mA h g−1. The stabilizing effect was further verified by scanning electron microscope (SEM) analysis. Electrochemical presodiation here could be a promising modification strategy for Mo-based anode materials.  相似文献   

6.
《Ceramics International》2017,43(4):3769-3773
MoO3/reduced graphene oxide (MoO3/RGO) composites were successfully prepared via a facile one-step hydrothermal method, and evaluated as anode materials for sodium ion batteries (SIBs). The crystal structures, morphologies and electrochemical properties of the as-prepared samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge tests, respectively. The results show that the introduction of RGO can enhance the electrochemical performances of MoO3/RGO composites. MoO3/RGO composite with 6 wt% RGO delivers the highest reversible capacity of ~208 mA h g−1 at 50 mA g−1 after 50 cycles with good cycling stability and excellent rate performance for SIBs. The excellent sodium storage performance of MoO3/RGO should be attributed to the synergistic effect between MoO3 and RGO, which offers the increased electrical conductivity, the facilitated electron transfer ability and the buffering of volume expansion.  相似文献   

7.
《Ceramics International》2016,42(14):15634-15642
Sb2O3/reduced graphene oxide (RGO) composites were prepared through a facile microwave-assisted reduction of graphite oxide in SbCl3 precursor solution, and investigated as anode material for sodium-ion batteries (SIBs). The experimental results show that a maximum specific capacity of 503 mA h g−1 is achieved after 50 galvanostatic charge/discharge cycles at a current density of 100 mA g−1 by optimizing the RGO content in the composites and an excellent rate performance is also obtained due to the synergistic effect between Sb2O3 and RGO. The high capacity, superior rate capability and excellent cycling performance of Sb2O3/RGO composites demonstrate their excellent sodium-ion storage ability and show their great potential as electrode materials for SIBs.  相似文献   

8.
《Ceramics International》2015,41(7):8533-8540
Graphene supported porous Si@C ternary composites had been synthesized by various routes and their structural, morphological and electrochemical properties were investigated. Porous Si spheres coated with carbon layer and supported by graphene have been designed to form a 3D carbon conductive network. Used as anode materials for lithium ion batteries, graphene supported porous Si@C ternary composites demonstrate excellent electrochemical performance and cycling stability. The first discharge capacity is 2184.7 mA h/g at a high current density of 300 mA/g. After 50 cycles, the reversible capacity is 652.4 mA h/g at a current density of 300 mA/g and the coulomb efficiency reaches at 98.7%. Due to their excellent electrochemical properties, graphene supported porous Si@C ternary composites can be a kind of promising anode materials for lithium ion batteries.  相似文献   

9.
Reduced graphene oxide (rGO) tethered with maghemite (γ-Fe2O3) was synthesized using a novel modified sol–gel process, where sodium dodecylbenzenesulfonate was introduced into the suspension to prevent the undesirable formation of an iron oxide 3D network. Thus, nearly monodispersed and homogeneously distributed γ-Fe2O3 magnetic nanoparticles could be obtained on surface of graphene sheets. The utilized thermal treatment process did not require a reducing agent for reduction of graphene oxide. The morphology and structure of the composites were investigated using various characterization techniques. As-prepared rGO/Fe2O3 composites were utilized as anodes for half lithium ion cells. The 40 wt.%-rGO/Fe2O3 composite exhibited high reversible capacity of 690 mA h g−1 at current density of 500 mA g−1 and good stability for over 100 cycles, in contrast with that of the pure-Fe2O3 nanoparticles which demonstrated rapid degradation to 224 mA h g−1 after 50 cycles. Furthermore, the composite showed good rate capability of 280 mA h g−1 at 10C (∼10,000 mA g−1). These characteristics could be mainly attributed to both the use of an effective binder, poly(acrylic acid) (PAA), and the specific hybrid structures that prevent agglomeration of nanoparticles and provide buffering spaces needed for volume changes of nanoparticles during insertion/extraction of Li ions.  相似文献   

10.
Designed as an anode material for sodium ion batteries, nitrogen-doped carbon sheets (NCSs) were successfully synthesized using graphene and dopamine as template and carbon precursor, respectively. The NCSs demonstrate high reversible capacity and excellent rate performance, delivering a high reversible capacity of 382 mAh g−1 at 50 mA g−1 after 55 cycles. Even up to 10 A g−1, a rate capacity of 75 mAh g−1 can be obtained. Furthermore, NCSs also have remarkable cycling stability with specific capacity of 165 mAh g−1 after 600 cycles (under 200 mA g−1). The excellent performance of NCSs can be ascribed to the nitrogen-doped two-dimension sheet structure.  相似文献   

11.
We describe a preparation of sulfur-doped mesoporous amorphous carbon (SMAC) from a commercially available alkyl surfactant sulfonate anion-intercalated NiAl-layered double hydroxide precursor via thermal decomposition and subsequent acid leaching. The resultant amorphous carbon is endowed with the integrated advantage of featuring high reversible capacity and long cycling stability: intrinsic doping of sulfur, large specific area, and broad mesopore size distribution. Electrochemical evaluation shows that the SMAC electrode exhibits highly enhanced electrochemical performances, compared with the electrode of non-doped mesoporous and amorphous carbon prepared by using a different surfactant (sodium laurate). A high reversible capacity of 958 mA h g−1 is achieved for the SMAC electrode after 110 cycles at 200 mA g−1, and especially a superlong cycle life with a reversible capacity of 579 mA h g−1 after 970 cycles at 500 mA g−1. Moreover, the SMAC electrode can facilitate the reversible insertion/extraction of Na ion, owing to the proper specific area and mesopore size distribution, as well as the improved electronic conductivity resulted from doping of sulfur.  相似文献   

12.
《Ceramics International》2017,43(3):3218-3223
In this work, the nanosized porous MnCo2O4 microspheres were synthesized by a hydrothermal method and their electrochemical behaviors were investigated based on a carbon supported composite air electrode for rechargeable sodium-air batteries. Under dry air test condition, the MnCo2O4/C air electrode demonstrated a stable working voltage of around 2.1 V vs. Na+/Na and a high initial discharge capacity of 7709.4 mA h g−1, based on the active material mass, at a current density of 0.1 mA cm−2. By a limit on the depth of discharge, the cell exhibited a specific capacity of 1000 mA h g−1 with a high cycling stability up to 130 cycles. The considerable electrocatalytic activity suggests that the as-proposed MnCo2O4 is a highly efficient catalyst as air electrode for rechargeable sodium-air batteries.  相似文献   

13.
Sodium ion battery is a promising electrical energy storage system for sustainable energy storage applications due to the abundance of sodium resources and their low cost. In this communication, the electrochemical properties of sodium ion storage in reduced graphene oxide (RGO) were studied in an electrolyte consisting of 1 M NaClO4 in propylene carbonate (PC). The experimental results show that the RGO anode allowed significant sodium ion insertion, leading to higher capacity at high current density compared to the previously reported results for carbon materials. This is due to the fact that RGO possesses higher electrical conductivity and is a more active host, with large interlayer distances and a disordered structure, enabling it to store a higher amount of Na ions. RGO anode exhibits high capacity combined with long-term cycling stability at high current densities, leading to reversible capacity as high as 174.3 mAh g−1 at 0.2 C (40 mA g−1), and even 93.3 mAh g−1 at 1 C (200 mA g−1) after 250 cycles. Furthermore, RGO could yield a high capacity of 141 mAh g−1 at 0.2 C (40 mA g−1) over 1000 cycles.  相似文献   

14.
《Ceramics International》2017,43(15):11998-12004
Metallic oxide ZnO is considered to be a promising alternative anode material for lithium ion battery because of its high theoretical capacities (978 mA h g−1). However, its inherent low electronic conductivity and undesirable large volume change result in inferior electrochemical performances and hinder its practical application. Herein, ZnO/ZnO@C composites are prepared by a simple carbonization process of ZnO/ZnO@ZIFs-8, which are constructed by using ZnO particles as both template and zinc sources for zeolitic imidazolate frameworks-8 (ZIF-8) preparation via a facile solution reaction. When evaluated as anode for lithium ion batteries, the as-prepared composites show an initial capacity of 878 mA h g−1 at current density of 0.1 A g−1 with high capacity retention of 95.6% after 50 cycles, and an initial capacity of 359 mA h g−1 tested at 5.0 A g−1 with a capacity retention of 85.3% after 500 cycles, exhibiting outstanding cycling stability and excellent rate capability. The ameliorated electrochemical performances are mainly attributed to the elevated conductivity and cushioning effects provided by carbon framework derived from ZIF-8, and the enhanced pseudocapacitance behavior originated from the decreased size of ZnO particles and high surface area of ZIFs-derived carbon.  相似文献   

15.
The composites of V2O3–ordered mesoporous carbon (V2O3–OMC) were synthesized and used as anode materials for Li-ion intercalation. These materials exhibited large reversible capacity, high rate performance and excellent cycling stability. For instance, a reversible capacity of V2O3–OMC composites was 536 mA h g−1 after 180 cycles at a current density of 0.1 A g−1. The high electrochemical performance of the V2O3–OMC composites is attributed to the anchoring of nanoparticles on mesoporous carbon for improving the electrochemical active of V2O3 particles for energy storage applications in high performance lithium-ion batteries.  相似文献   

16.
《Ceramics International》2015,41(8):9461-9467
LiFePO4–silicon composites were fabricated by using a solid-state method for applying positive electrodes in lithium ion batteries. The LiFePO4–silicon composites were characterized with X-ray diffraction and field emission scanning electron microscopy. Their electrochemical properties were investigated with cyclic voltammetry, electrochemical impedance spectroscopy, and charge–discharge tests. The added silicon not only suppressed the surface corrosion caused by the decreasing H+ concentration in the electrolyte, but it also acted as a barrier between the LiFePO4 particles and LiPF6 electrolyte, thereby preventing the dissolution of Fe2+ in the electrode and enhancing the electrolyte/active material interactions. This resulted in improved lithium-ion transfer kinetics and excellent positive electrode performance, especially at high current densities and different operating temperatures (0, 25, and 50 °C). At 25 °C, the LiFePO4 composite containing 2 wt% of silicon delivered the best electrochemical performance with a lithium-ion diffusion coefficient of 1.81×10−9 cm2 s−1, a specific discharge capacity of 143 mA h g−1 for the initial cycle, and a capacity retention of 98% after 100 cycles. In contrast, the corresponding values for the pure LiFePO4 were 1.19×10−11 cm2 s−1, 115 mA h g−1, and a capacity retention of 76% after 100 cycles, respectively.  相似文献   

17.
《Ceramics International》2016,42(16):18173-18180
It is essential to develop new electrode materials for electrochemical energy storage to meet the increasing energy demands, reduce environmental pollution and develop low-carbon economy. In this work, binder-free NiCo2S4 nanorod arrays (NCS NRAs) on nickel foam electrodes are prepared by an easy and low energy-consuming route. The electrodes exhibit superior electrochemical properties both for alkaline and Li-ion batteries. In 3 M KOH electrolyte, the NCS NRAs achieve a specific capacity of 240.5 mA h g−1 at a current density of 0.2 A g−1, and 105.7 mA h g−1 after 1500 cycles at the current density of 5 A g−1 with capacity retention of 87.3%. As the anode for LIBs, it shows a high initial capacity of 1760.7 mA h g−1 at the current density of 100 mA g−1, corresponding coulombic efficiency of 87.6%, and a rate capacity of 945 mA h g−1 when the current density is improved 10 times. Hence, the NiCo2S4 nanorod arrays are promised as electrode materials with competitive performance.  相似文献   

18.
Design and fabrication of tin dioxide/carbon composites with peculiar nanostructures have been proven to be an effective strategy for improving the electrochemical performance of tin dioxide-based anode for lithium-ion batteries, and thus have attracted extensive attention. Herein, we have successfully prepared a uniquely three-dimensional and interweaved wire-in-tube nanostructure of nitrogen-doped carbon nanowires encapsulated into tin dioxide@carbon nanotubes, denoted as NCNW@void@SnO2@C, via a facile and novel approach for the first time. Interestingly, one-dimension void space located between nitrogen-doped carbon nanowires and innermost wall of tin dioxide@carbon tubes is also formed. The possible formation mechanism of wire-in-tube nanostructure is also discussed and determined by transmission electron microscopy, X-ray diffraction measurement, laser Raman spectroscopy and X-ray photoelectron spectroscopy characterizations. This unique NCNW@void@SnO2@C fully combines all the advantages of using a three-dimensional architecture, hollow structure, carbon coating, and a mechanically robust carbon nanowires support, thus exhibiting an excellent electrochemical performance as promising anode materials for lithium-ion batteries. A high reversible capacity of 721.3 mAh g−1 can be remained even after 500 cycles at a current density of 200 mA g−1, as well as a capacity of 456.7 mAh g−1 is obtained even at 3000 mA g−1.  相似文献   

19.
《Ceramics International》2017,43(13):9630-9635
Transition metal sulfides have been proved as promising candidates of anode materials for sodium-ion batteries (SIBs) due to their high sodium storage capacity, low cost and enhanced safety. In this study, the amorphous CoS nanoparticle/reduced graphene oxide (CoS/rGO) composite has been fabricated by a facile one-step electron beam radiation route to in situ decorate amorphous CoS nanoparticle on the rGO nanosheets. Benefiting from the small particle size (~2 nm), amorphous structure, and electronic conductive rGO nanosheets, the CoS/rGO nanocomposite exhibits high sodium storage capacity (440 mAh g−1 at 100 mA g−1), excellent cycling stability (277 mAh g−1 after 100 cycles at 200 mA g−1, 79.6% capacity retention) and high rate capability (149.5 mAh g−1 at 2 A g−1). The results provide a facile approach to fabricate promising amorphous and ultrafine metal sulfides for energy storage.  相似文献   

20.
《Ceramics International》2017,43(16):13710-13716
Development of novel electrode materials with high energy and power densities for lithium-ion batteries (LIBs) is the key to meet the demands of electric vehicles. Transition metal oxides that can react with large amounts of Li+ for electrochemical energy storage are considered promising anode materials for LIBs. In this work, NiCo2O4 nanosheets and nanocones on Ni foam have been synthesized via general hydrothermal growth and low-temperature annealing treatment. They exhibit high rate capacities and good cyclic performance as LIB anodes owing to their architecture design, which reduces ion and electron transport distance, expands the electrode–electrolyte contact, increases the structural stability, and buffers volume change during cycles. Notably, NiCo2O4 nanosheets deliver an initial capacity of 2239 mAh g−1 and a rate capacity of 964 mAh g−1 at current densities of 100 and 5000 mA g−1, respectively. The corresponding values of nanocones are 1912 and 714 mAh g−1. Hence, the as-synthesized NiCo2O4 nanosheets and nanocones, which are carbon-free and binder-free with higher energy densities and stronger connections between active materials and current collectors for better stability, are promising for use in advanced anodes for high-performance LIBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号