首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2016,42(5):5754-5761
AZO/Cu/AZO multilayer thin films produced under different annealing conditions are studied in this paper, to examine the effects of atmosphere and annealing temperature on their optical and electrical properties. The multilayer thin films are prepared by simultaneous RF magnetron sputtering (for AZO) and DC magnetron sputtering (for Cu). The thin films were annealed in a vacuum or an atmosphere of oxygen at temperatures ranging from 100 to 400 °C in steps of 100 °C for 3 min. High-quality multilayer films (at Cu layer thickness of 15 nm) with resistivity of 1.99×10−5 Ω-cm and maximum optical transmittance of 76.23% were obtained at 400 °C annealing temperature in a vacuum. These results show the films to be good candidates for use as high quality electrodes in various displays applications.  相似文献   

2.
《Ceramics International》2015,41(8):9668-9670
Trilayer GZO/Ni/GZO films were deposited onto polycarbonate (PC) substrates with RF and DC magnetron sputtering, and then the influence of a Ni interlayer on the optical and electrical properties of the films was investigated. A 2-nm-thick Ni interlayer decreased the resistivity to 6.4×10−4 Ω cm and influenced the optical transmittance.Although optical transmittance deteriorated with Ni insertion, the films showed a relatively high optical transmittance of 74.5% in the visible wavelength region. The figure of merit (FOM) of a GZO single layer film was 1.2×10−4 Ω−1, while that of the GZO/Ni/GZO films reached a maximum of 8.2×10−4 Ω−1.Since a higher FOM results in higher quality transparent-conductive oxide (TCO) films, it is concluded that GZO films with a 2 nm Ni interlayer have better optoelectrical performance than single-layer GZO films.  相似文献   

3.
《Ceramics International》2015,41(7):8856-8860
Niobium-doped titania (TNO) film can be used as a transparent conductive oxide (TCO) film due to its excellent conductivity and visible transparency. The performances of TNO sputtering targets are thus critical issues in optimizing sputtered films. This study clarifies the influences of inert and reducing atmospheres on the microstructure, densification, crystal structure, and electrical properties of TNO sputtering targets. The results indicate that a sintering atmosphere of 90% Ar–10% H2 can result in a lower sintered density, larger grain size, and lower resistivity than can an atmosphere of Ar, followed by one of air. Sintering in 90% Ar–10% H2 or Ar obviously decreases the resistivity of TiO2, from >108 Ω cm to <10−1 Ω cm, and the TNO target, from >101 Ω cm to <10−1 Ω cm. The resistivity of TNO target sintered at 1200 °C in 90% Ar–10% H2 is as low as 1.8×10−2 Ω cm.  相似文献   

4.
《Ceramics International》2016,42(4):5258-5262
The ZnMgBeO/Ag/ZnMgBeO multilayer structures were sputter grown and their electrical and optical properties have been investigated in detail. Results indicated that the ZnMgBeO(30 nm)/Ag(10 nm)/ZnMgBeO(30 nm) optimum structure shows energy bandgap of ~4.5 eV, electrical resistivity of ~6.5×10−5 Ωcm, and optical transmittance of 78–90% over the visible wavelength range and 74–90% over 300–400 nm range, representing a significant improvement over the previously reported transparent conducting films. High resistivity (~0.12 MΩcm) of the ZnMgBeO layer did not critically affect the conductivity of the multilayer, because the Ag films act as the conducting path. It was also observed that the properties were substantially deteriorated at the Ag thickness of 5 nm, as the Ag film is only partly continuous, resulting in very rough interfaces and surfaces.  相似文献   

5.
《Ceramics International》2017,43(8):5856-5861
High density and low electrical resistivity ITO targets were prepared by normal pressure sintering in oxygen with Bi2O3–Nb2O5 addition. The relative density, microstructure and electrical properties of the ITO targets can be adjusted by changing the sintering temperature (1350 °C~1550 °C) and the content of Bi2O3–Nb2O5. The results show that the sintering temperature of ITO targets with Bi2O3–Nb2O5 decreased from 1550 °C to 1450 °C, and the maximum relative density (99.6%) and the lowest electrical resistivity (1.78×10−4 Ω cm) were reached when the sintering temperature was 1450 °C with 5 wt% Bi2O3–Nb2O5. The carrier concentration increased as the increase of the contents of Bi2O3–Nb2O5 and sintering temperature. The mobility first increased, and then decreased above 1450 °C as the sintering temperature increased.  相似文献   

6.
By hot-filament (HF) chemical vapor deposition (CVD), heavily boron (B)-doped single-crystal diamond (100) films were fabricated and their structural and electrical properties were studied. We did not observe the soot formation, which is frequently observed and limits the performances in the case of microwave plasma (MWP) CVD. The B concentration was successfully controlled over the range from 1019 to 1021 cm 3. Hillock-free films were obtained, whose mean surface roughness measured by atomic force microscopy (AFM) was less than 0.1 nm. From the reciprocal space mapping (RSM) around 113 diamond reflection, it was revealed that the films possess the smaller lattice expansion than that expected from the Vegard's law. The room-temperature resistivity was decreased lower than 1 mΩ·cm for B concentration ~ 1021 cm 3. These results indicate that the HFCVD possesses large potential for fabricating the device-grade p+ diamond.  相似文献   

7.
《Ceramics International》2016,42(12):13697-13703
Cu–Cr–O films were prepared by DC magnetron co-sputtering using Cu and Cr targets on quartz substrates. The films were then annealed at temperatures ranging from 400 °C to 900 °C for 2 h under a controlled Ar atmosphere. The as-deposited and 400 °C-annealed films were amorphous, semi-transparent, and insulated. After annealing at 500 °C, the Cu–Cr–O films contained a mixture of monoclinic CuO and spinel CuCr2O4 phases. Annealing at 600 °C led to the formation of delafossite CuCrO2 phases. When the annealing was further increased to temperatures above 700 °C, the films exhibited a pure delafossite CuCrO2 phase. The crystallinity and grain size also increased with the annealing temperature. The formation of the delafossite CuCrO2 phase during post-annealing processing was in good agreement with thermodynamics. The optimum conductivity and transparency were achieved for the film annealed at approximately 700 °C with a figure of merit of 1.51×10−8 Ω−1 (i.e., electrical resistivity of up to 5.13 Ω-cm and visible light transmittance of up to 58.3%). The lower formation temperature and superior properties of CuCrO2 found in this study indicated the higher potential of this material for practical applications compared to CuAlO2.  相似文献   

8.
《Ceramics International》2017,43(11):8391-8395
Titanium dioxide (TiO2) films doped with different indium (In) concentrations have been prepared on SrTiO3 (STO) substrates by high vacuum metalorganic chemical vapor deposition (MOCVD). X-ray diffraction (XRD) analyses revealed the TiO2 films doped with low In concentrations to be [001] oriented anatase phase and the films with high In concentrations to present polycrystalline structures. The 1.8% In-doped TiO2 film exhibited the best electrical conductivity properties with the lowest resistivity of 8.68×10−2 Ω cm, a Hall mobility of 10.9 cm2 V−1 s−1 and a carrier concentration of 6.5×1018 cm−3. The films showed excellent transparency with average transmittances of over 85% in the visible range.  相似文献   

9.
《Ceramics International》2017,43(10):7543-7551
The deposition rate, transmittance and resistivity of aluminium-doped zinc oxide (AZO) films deposited via radio frequency (r.f.) sputtering change with target thickness. An effective method to control and maintain AZO film properties was developed. The strategy only involved the regulation of target bias voltage of r.f. magnetron sputtering system. The target bias voltage considerably influenced AZO film resistivity. The resistivity of the as-deposited AZO film was 9.82×10−4 Ω cm with power density of 2.19 W/cm2 at target self-bias of −72 V. However, it decreased to 5.98×10−4 Ω cm when the target bias voltage was increased to −112 V by applying d.c. voltage. Both growth rate and optical band gap of AZO film increased with the absolute value of target bias voltage – growth rate increased from 10.54 nm/min to 25.14 nm/min, and band gap increased from 3.57eV to 3.71 eV when target bias voltage increased from −72 V to −112 V at r.f. power density of 2.19 W/cm2. The morphology of AZO films was slightly affected by the target bias voltage. Regulating target bias voltage is an effective method to obtain high-quality AZO thin films deposited via r.f. magnetron sputtering. It is also a good choice to maintain the quality of AZO film in uptime manufacturing deposition.  相似文献   

10.
《Ceramics International》2017,43(13):9759-9768
Fabrication of highly conductive and transparent TiO2/Ag/TiO2 (referred hereafter as TAT) multilayer films with nitrogen implantation is reported. In the present work, TAT films were fabricated with a total thickness of 100 nm by sputtering on glass substrates at room temperature. The as-deposited films were implanted with 40 keV N ions for different fluences (1×1014, 5×1014, 1×1015, 5×1015 and 1×1016 ions/cm2). The objective of this study was to investigate the effect of N+ implantation on the optical and electrical properties of TAT multilayer films. X-ray diffraction of TAT films shows an amorphous TiO2 film with a crystalline peak assigned to Ag (111) diffraction plane. The surface morphology studied by atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) revealed smooth and uniform top layer of the sandwich structure. The surface roughness of pristine film was 1.7 nm which increases to 2.34 nm on implantation for 1×1014 ions/cm2 fluence. Beyond this fluence, the roughness decreases. The oxide/metal/oxide structure exhibits an average transmittance ~80% for pristine and ~70% for the implanted film at fluence of 1×1016 ions/cm2 in the visible region. The electrical resistivity of the pristine sample was obtained as 2.04×10−4 Ω cm which is minimized to 9.62×10−5 Ω cm at highest fluence. Sheet resistance of TAT films decreased from 20.4 to 9.62 Ω/□ with an increase in fluence. Electrical and optical parameters such as carrier concentration, carrier mobility, absorption coefficient, band gap, refractive index and extinction coefficient have been calculated for the pristine and implanted films to assess the performance of films. The TAT multilayer film with fluence of 1×1016 ions/cm2 showed maximum Haacke figure of merit (FOM) of 5.7×10−3 Ω−1. X-ray photoelectron spectroscopy (XPS) analysis of N 1s and Ti 2p spectra revealed that substitutional implantation of nitrogen into the TiO2 lattice added new electronic states just above the valence band which is responsible for the narrowing of band gap resulting in the enhancement in electrical conductivity. This study reports that fabrication of multilayer transparent conducting electrode with nitrogen implantation that exhibits superior electrical and optical properties and hence can be an alternative to indium tin oxide (ITO) for futuristic TCE applications in optoelectronic devices.  相似文献   

11.
It is normally assumed that the sheet resistances under and outside the metal contact are identical when deriving specific contact resistivity of graphene from transmission line model. We considered the contact end resistance and obtained the sheet resistance under contact of 670 Ω/□, which is much different from that outside the contact of 1840 Ω/□. Considering the difference, the value of specific contact resistivity is determined to be 3.3 × 10−6 Ω cm2, which is three times as large as the unmodified value. This indicates that the difference between the sheet resistances under and outside the contact affects the derived specific contact resistivity of graphene significantly.  相似文献   

12.
Highly conductive SiC ceramics were fabricated by sintering β-SiC and TiN powder mixture in N2 atmosphere. SiC ceramics exhibited decreased electrical resistivity (ρ) with increasing TiN content. X-ray diffraction data indicated that the specimens consisted of β-SiC grains without a detectible secondary phase for low TiN content (≤2 vol%) but contained a Ti2CN phase as the TiN content increased. The temperature-dependent resistivity ρ(T) of specimens revealed semiconductor-like behavior for TiN content up to 10 vol% and metal-like behavior above 20 vol%. For the specimen with TiN content of 15 vol%, ρ(T) remained almost constant (2.06 ± 0.01 × 10−3 Ω cm) in the 4–300 K range. The resistivity of metal-like specimens were as low as 3.5 × 10−4 Ω cm for TiN content of 20 vol%. For semiconductor-like specimens, ρ(T) was primarily affected by N donors in the β-SiC grains. Metal-like specimens were primarily affected by metallic Ti2CN clusters.  相似文献   

13.
This paper describes the orientation control and the electrical properties of the chemical solution deposition (CSD) derived LaNiO3 (LNO) thin film. The LNO precursor solutions were prepared using lanthanum nitrate and nickel acetate as La and Ni source, and ethanol or 2-methoxyethanol and 2-aminoethanol mixed solution as solvents. The LNO films were spin-coated using these precursor solutions and annealed at the temperature from 500 to 700 °C. The resulting LNO film annealed at 700 °C derived from 2-methoxyethanol and 2-aminoethanol mixed solvent exhibited (1 0 0)-orientation, with some surface cracks and pores, and relatively higher resistivity of 2.49 × 10−3 Ω cm. The LNO film derived from 2-methoxyethanol and 2-aminoethanol mixed solvent annealed at 700 °C in an oxygen atmosphere showed highly (1 0 0)-orientation, with higher density, a few cracks and pores, and exhibited a good electrical resistivity of 7.27 × 10−4 Ω cm.  相似文献   

14.
《Ceramics International》2017,43(7):5574-5578
The effects of yttrium (Y) additions (x=0, 0.05, 0.1, and 0.2) on the microstructure, chemical structure, and electrical properties of YxInSnOy (YITO) thin films, prepared using a sol-gel process were examined. The transmission electron microscopy (TEM) observations showed that the undoped InSnO (ITO) film consisted of an amorphous structure with local crystalline domains on the film surface, whereas the Y additions (x=0.05, 0.1, and 0.2) to ITO suppressed the formation of the crystalline phase. X-ray photoelectron spectroscopy (XPS) analysis showed that the Y content decreased the concentration of oxygen vacancies owing to the strong incorporation of Y with oxygen. As a result of the Y incorporation, the carrier concentration of ITO films decreased. The saturation mobility (μsat), the on-off ratios (Ion/off), and the sub-threshold swing (S.S) of YITO films were 1.1 cm2 V−1 s−1, ~106, and ~0.5 V decade−1, respectively, which are comparable with 1.7 cm2 V−1 s−1, ~105, and ~1.17 V decade−1 of ITO film. Additionally, the initial threshold voltage (VTH) was positive shift with increased of Y addition and VTH shift (ΔVTH) under the positive bias stress (PBS) results decreased by Y addition.  相似文献   

15.
Contact properties of Palladium (Pd) on the surface of hydrogen-terminated single crystal diamond were investigated with several treatment conditions. 150 nm Pd pad was deposited on diamond surface by thermal evaporation technique, which shows good Ohmic properties with the specific contact resistivity (ρc) of 1.8 × 10 6 Ω cm2 evaluated by Transmission Line Model. To identify the thermal stability, the sample was annealed in Ar ambient from 300 to 700 °C for 3 min at each temperature. As the temperature increased, ρc firstly decreased to 4.93 × 107 Ω cm2 at 400 °C and then increased. The barrier height was evaluated to be − 0.15 eV and − 0.03 eV for as-deposited and 700 °C annealed sample by X-ray photoelectron spectroscopy analysis. Several surface treatments were also carried out to determine their effect on ρc, among which HNO3 vapor treated sample indicates a lower value of 5.32 × 106 Ω cm2.  相似文献   

16.
《Ceramics International》2016,42(13):14581-14586
Aluminum and gallium co-doped ZnO (AGZO) thin films were grown by simple, flexible and cost-effective spray pyrolysis method on glass substrates at a temperature of 230 °C. Effects of equal co-doping with aluminum (Al) and gallium (Ga) on structural, optical and electrical properties were investigated by X-ray diffraction (XRD), UV–vis–NIR spectrophotometry and Current–Voltage (I–V) measurements, respectively. XRD patterns showed a successful growth with high quality polycrystalline films on glass substrates. The predominant orientation of the films is (002) at dopant concentrations ≤2 at% and (101) at higher dopant concentrations. Incorporation of Al and Ga to the ZnO crystal structure decreased the crystallite size and increased residual stress of the thin films. All films were highly transparent in the visible region with average transmittance of 80%. Increasing doping concentrations increased the optical band gap, from 3.12 to 3.30 eV. A blue shift of the optical band gap was observed from 400 nm to 380 nm with increase in equal co-doping. Co-doping improved the electrical conductivity of ZnO thin films. It has been found from the electrical measurements that films with dopant concentration of 2 at% have lowest resistivity of 1.621×10−4 Ω cm.  相似文献   

17.
Semiconducting n-type diamond can be fabricated using phosphorus as a substitutional donor dopant. The dopant activation energy level at 0.58 eV is deep. At high dopant concentrations of 1020 cm 3 the activation energy reduces to less than 0.05 eV. Phosphorus doping at concentrations of 1020 cm 3 or higher has been achieved with epitaxial growth on the (111) diamond crystallographic surface. In this work epitaxial growth of diamond with high phosphorus concentrations exceeding 1020 cm 3 is performed using a microwave plasma-assisted chemical vapor deposition process with process conditions that include a pressure of 160 Torr. This pressure is higher than previous phosphorus doping reports of (111) surface diamond growth. The other growth conditions include a feedgas mixture of 0.25% methane and 500 ppm phosphine in hydrogen, and a substrate temperature of 950–1000 °C. The measured growth rate was 1.25 μm/h. The room temperature resistivity of the heavily phosphorus doped diamond was 120–150 Ω-cm and the activation energy was 0.027 eV.  相似文献   

18.
The electrical surface properties of ultrananocrystalline diamond/amorphous carbon composite films have been investigated by four-point probe I/V and Hall measurements, whereas impedance spectroscopy has been used to establish the electrical bulk properties of the films. It turned out that the surface is p-type conductive with a resistivity of 0.14 Ω cm and a sheet carrier concentration of 7.6 × 1013 cm?2. The bulk resistivity is higher by almost seven orders of magnitude (1.3 × 106 Ω cm). The bulk conduction is thermally activated with an apparent activation energy of 0.17 eV. From Cole–Cole plots of the impedance spectra it can be concluded that there are three different contributions to the bulk conductivity. In order to try to identify these three components contributing to the electrical bulk conduction, Raman spectra have been recorded at five different wavelengths from the IR to UV region. These measurements showed that the UNCD/a-C films consist of at least three components: diamond nanocrystallites, an amorphous carbon matrix, and trans-polyacetylene-like structures probably at the interface between these two.  相似文献   

19.
In this report, we present a study on lattice and electronic structures of B doped layers formed using B implantation into diamond. Boron layers were produced using the multiple-energy B ion implantation (total dose: 2.1 × 1015 to 1.7 × 1017 cm 2) into type IIa diamond at ~ 400 °C. Optical absorption and Hall effects were measured in the range of 80−1000 K for investigating the change of the lattice and electronic structures with the B concentration in diamond. The p-type carrier conduction was observed at 80−1000 K in all the samples. While a lightly B doped sample displays typical semiconductive, temperature-dependent valence-band conduction, heavily B doped samples have the very weak or almost zero temperature dependence of the carrier concentrations, resistivity and Hall mobility in this temperature region, suggesting characteristics of a p-type degenerate semiconductor. In such heavily doped samples, broad optical absorption bands, most likely corresponding to Drude absorption originating from free holes, were observed. The minimum resistivity and the sheet resistance at room temperature among the samples were 1.4 mΩcm and 56 Ω/□, respectively. These results indicate that very low-resistive p-type degenerate semiconducting layers were produced, preserving diamond lattice (preventing graphitization), despite high-dose ion irradiation.  相似文献   

20.
This work describes a novel approach to fabricate horizontal nanotube interconnects with dimensions comparable to state-of-the-art copper interconnects. The interconnects consist of carbon nanotubes bundles with wall density ≈1013 cm−2, wire lengths of tens of micrometers and wire diameters scalable to 50 nm. The nanotubes are first grown vertically, inside vias with diameters ranging from 300 to 200 nm, and then flipped on the horizontal direction. Symmetrical contacts are made at the tips of the nanotubes in the so-called end-bonded geometry via a metallization process with a key dry-etch step. The quality of the contacts and the nanotubes is evaluated from the electrical measurements by extracting the specific contact resistivity and the carbon nanotube resistivity, respectively. The measured contact resistivity is 3.9 × 10−8 Ω cm2 with Pd/Au contacts. This is the lowest value ever reported so far for nanotubes contacted in an end-bonded geometry. The nanotube resistivity is as low as 1.1  cm, a value among the best reported to date and only two decades higher than that of copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号