首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2016,42(16):18612-18619
The synergetic effects SiC particles and short carbon fibers (Csf) as well as hot pressing parameters (sintering temperature, dwell time and applied pressure) on the grain growth of ZrB2-based composites were investigated. Taguchi methodology was employed for the design of experiments to study the microstructure and grain growth of ZrB2–SiC–Csf ceramic composites. Three hot pressing parameters and SiC/Csf ratio were selected as the scrutinized variables. The sintering temperature and SiC/Csf ratio were identified by ANOVA as the most effective variables on the gain growth of ZrB2-based samples. Removal of oxide impurities from the surface of starting particles by the reactant Csf, not only hindered the extraordinary grain growth of ZrB2 matrix, but also improved the sinterability of the ceramics. A fully dense ceramic with an average grain size of 8.3 µm was obtained by hot pressing at 1850 °C for 30 min under 16 MPa through adding 20 vol% SiC and 10 vol% Csf to the ZrB2 matrix. SEM observations and EDS analysis verified the in-situ formation of ZrC which can restrain the growth of ZrB2 particles, similar to the role of SiC, by the pinning of grain boundaries as another stationary secondary phase.  相似文献   

2.
《Ceramics International》2015,41(7):8388-8396
ZrB2–SiC–ZrO2 composites were hot pressed in order to investigate the effects of adding nano-sized ZrO2 particles as well as the hot pressing parameters on the densification behavior of ZrB2–SiC composites. An L9 orthogonal array of the Taguchi method was employed to study the significance of each parameter such as the sintering temperature, time, the applied external pressure, and ZrO2/SiC volume ratio on the densification process. The statistical analyses revealed that among the mentioned parameters, the hot pressing temperature had a great influence over the densification. By being hot pressed at 1850 °C for 90 min under 16 MPa, fully dense ZrB2-based composites were obtained. The relative density of the composites decreased at first and then enhanced as a function of ZrO2/SiC ratio. Microstructural investigation of the fracture surfaces of the composites, which was carried out using the SEM analysis, showed the formation of new phases on the surfaces of SiC grains. The EDS and XRD analyses identified the ZrC as the newly formed interfacial phase due to the reaction between nano-ZrO2 and SiC. The ZrC acted as an adhesive interphase between the ZrB2/SiC grains, which could assist the sintering process.  相似文献   

3.
《Ceramics International》2015,41(8):9628-9636
The influences of hot pressing parameters and SiC particle size on the bulk density, the average ZrB2 grain size and Vickers hardness of ZrB2–25 vol% SiC ultrahigh temperature ceramic composites were investigated. In this paper, the Taguchi methodology (An L9 orthogonal array) was used to specify the contributions of four parameters: the hot pressing temperature, holding time, applied pressure and SiC particle size. The experimental procedure included nine tests for four parameters with three levels which were employed to optimize the process parameters. The statistical analyses recognized the hot pressing pressure and temperature as the most consequential parameters affecting the density and hardness of ZrB2–SiC composites. The SiC particle size and holding time were specified as the most effective parameters on the average ZrB2 grain size. The bulk density, average ZrB2 grain size, Vickers hardness and fracture toughness of the sample, hot pressed at optimal conditions (1850 °C, 90 min, 16 MPa and 200 nm), reached about 5.36 g/cm3, 10.03 µm, ~17.1 GPa and 5.9 MPa m1/2, respectively. The confirmation test, carried out under optimum conditions, showed that the experimental results were relatively equal to the predicted values from the Taguchi prediction model. Finally, the mechanisms of enhanced fracture toughness of the hot pressed ZrB2–SiC ceramic composites were discussed.  相似文献   

4.
Thermal diffusivity and conductivity of hot pressed ZrB2 with different amounts of B4C (0–5 wt%) and ZrB2–SiC composites (10–30 vol% SiC) were investigated experimentally over a wide range of temperature (25–1500 °C). Both thermal diffusivity and thermal conductivity were found to decrease with increase in temperature for all the hot pressed ZrB2 and ZrB2–SiC composites. At around 200 °C, thermal conductivity of ZrB2–SiC composites was found to be composition independent. Thermal conductivity of ZrB2–SiC composites was also correlated with theoretical predictions of the Maxwell–Eucken relation. The dominated mechanisms of heat transport for all hot pressed ZrB2 and ZrB2–SiC composites at room temperature were confirmed by Wiedemann–Franz analysis by using measured electrical conductivity of these materials at room temperature. It was found that electronic thermal conductivity dominated for all monolithic ZrB2 whereas the phonon contribution to thermal conductivity increased with SiC contents for ZrB2–SiC composites.  相似文献   

5.
《Ceramics International》2017,43(17):15047-15052
The combined effects of SiC particles and chopped carbon fibers (Cf) as well as sintering conditions on the microstructure and mechanical properties of spark plasma sintered ZrB2-based composites were investigated by Taguchi methodology. Analysis of variance was used to optimize the spark plasma sintering variables (temperature, time and pressure) and the composition (SiC/Cf ratio) in order to enhance the hardness of ZrB2–SiC–Cf composites. The sintering temperature was found as the most effective variable, with a significance of 83%, on the hardness. The hardest ZrB2-based ceramic was achievable by adding 20 vol% SiC and 10 vol% Cf after spark plasma sintering at 1850 °C for 6 min under 30 MPa. Fracture toughness improvement were related to the simultaneous presence of SiC and Cf phases as well as the in-situ formation of nano-sized interfacial ZrC particles. Crack deflection, crack branching and crack bridging were detected as the toughening mechanisms. A Vickers hardness of 14.8 GPa and an indentation fracture toughness of 6.8 MPa m1/2 were measured for the sample fabricated at optimal processing conditions.  相似文献   

6.
《Ceramics International》2016,42(4):5375-5381
The influences of adding SiC on the microstructure and densification behavior of ZrB2 and TiB2 ceramics, hot pressed at 1850 °C for 60 min under 20 MPa, were investigated. The sintered samples were characterized by SEM, EDS and XRD methods. A fully dense TiB2-based ceramic was obtained by adding 30 vol% SiC. The grain size of ZrB2 or TiB2 matrices in the final microstructures decreased with increasing SiC content. The XRD analyses, microstructural characterization as well as thermodynamical calculations proved the in-situ formation of TiC in the SiC reinforced TiB2-based composites. The interfaces between ZrB2 and SiC grains in the SiC reinforced ZrB2-based composites were free of any impurities or tertiary interfacial phases such as ZrC. This result was consistent with the X-ray diffraction pattern and thermodynamics.  相似文献   

7.
《Ceramics International》2015,41(4):5843-5851
Hot pressed monolithic ZrB2 ceramic (Z), ZrB2–20 vol% SiC composite (ZS20) and ZrB2–20 vol% SiC–10 vol% nano-graphite composite (ZS20Gn10) were investigated to determine the influence of graphite nano-flakes on the sintering process, microstructure, and mechanical properties (Vickers hardness and fracture toughness) of ZrB2–SiC composites. Hot pressing at 1850 °C for 60 min under 20 MPa resulted in a fully dense ZS20Gn10 composite (relative density: 99.6%). The results disclosed that the grain growth of ZrB2 matrix was efficiently hindered by SiC particles as well as graphite nano-flakes. The fracture toughness of ZS20Gn10 composite (7.1 MPa m1/2) was essentially improved by incorporating the reinforcements into the ZrB2 matrix, which was greater than that of Z ceramic (1.8 MPa m1/2) and ZS20 composite (3.8 MPa m1/2). The fractographical observations revealed that some graphite nano-flakes were kept in the ZS20Gn10 microstructure, besides SiC grains, which led to toughening of the composite through graphite nano-flakes pull out. Other toughening mechanisms such as crack deflection and branching as well as crack bridging, due to the thermal residual stresses in the interfaces, were also observed in the polished surface.  相似文献   

8.
《Ceramics International》2017,43(11):8411-8417
The effect of nano-sized carbon black on densification behavior, microstructure, and mechanical properties of zirconium diboride (ZrB2) – silicon carbide (SiC) ceramic was studied. A ZrB2-based ceramic matrix composite, reinforced with 20 vol% SiC and doped with 10 vol% nano-sized carbon black, was hot pressed at 1850 °C for 1 h under 20 MPa. For comparison, a monolithic ZrB2 ceramic and a ZrB2–20 vol% SiC composite were also fabricated by the same processing conditions. By adding 20 vol% SiC, the sintered density slightly improved to ~93%, compared to the relative density of ~90% of the monolithic one. However, adding 10 vol% nano-sized carbon black to ZrB2–20 vol% SiC composite meaningfully increased the sinterability, as a relatively fully dense sample was obtained (RD=~100%). The average grain size of sintered ZrB2 was significantly affected and controlled by adding carbon black together with SiC acting as effective grain growth inhibitors. The Vickers hardness, flexural strength and fracture toughness of SiC reinforced and carbon black doped composites were found to be remarkably higher than those of monolithic ZrB2 ceramic. Moreover, unreacted carbon black additives in the composite sample resulted in the activation of some toughening mechanisms such as crack deflections.  相似文献   

9.
This study reviews densification behaviour, mechanical properties, thermal, and electrical conductivities of the ZrB2 ceramics and ZrB2-based composites. Hot-pressing is the most commonly used densification method for the ZrB2-based ceramics in historic studies. Recently, pressureless sintering, reactive hot pressing, and spark plasma sintering are being developed. Compositions with added carbides and disilicides displayed significant improvement of densification and made pressureless sintering possible at ≤2000 °C. Reactive hot-pressing allows in situ synthesizing and densifying of ZrB2-based composites. Spark plasma sintering displays a potential and attractive way to densify the ZrB2 ceramics and ZrB2-based composites without any additive. Young's modulus can be described by a mixture rule and it decreased with porosity. Fracture toughness displayed in the ZrB2-based composites is in the range of 2–6 MPa m1/2. Fine-grained ZrB2 ceramics had strengths of a few hundred MPa, which increased with the additions of SiC and MoSi2. The small second phase size and uniform distribution led to higher strengths. The addition of nano-sized SiC particles imparts a better oxidation resistance and improves the strength of post-oxidized ZrB2-based ceramics. In addition, the ZrB2-based composites showed high thermal and electrical conductivities, which decreased with temperature. These conductivities are sensitive to composition, microstructure and intergranular phase. The unique combinations of mechanical and physical properties make the ZrB2-based composites attractive candidates for high-temperature thermomechanical structural applications.  相似文献   

10.
Starting with non-stoichiometric Zr–B4C powder mixture ZrB2–ZrC matrix composites with SiC particulate addition have been made. It was found that variable amounts (5–25 vol%) of SiC could be incorporated and reactively hot pressed (RHPed) to relative densities of 97–99% at 1400–1500 °C. This technique has the potential to fabricate ZrB2-based matrices at low temperatures with a variety of reinforcements whose composition and volume fraction are not limited by stoichiometric considerations. The hardness of the composites is in the range of 17–22 GPa.  相似文献   

11.
Residual strength (room temperature strength after exposure in air at high temperatures) of hot pressed ZrB2–SiC composites was evaluated as function of SiC contents (10–30 vol%) as well as exposure temperatures for 5 h (1000–1700 °C). Multilayer oxide scale structures were found after exposures. The composition and thickness of these multilayered oxide scale structure was dependent on exposure temperature and SiC contents in composites. After exposure to 1000 °C for 5 h, the residual strength of ZrB2–SiC composites improved by nearly 60% compared to the as-hot pressed composites with 20 and 30 vol% SiC. On the other hand, the residual strength of these composites remained unchanged after 1500 °C for 5 h. A drastic degradation in residual strength was observed in composites with 20 and 30 vol% SiC after exposure to 1700 °C for 5 h in ZrB2–SiC. An attempt was made to correlate the microstructural changes and oxide scales with residual strength with respect to variation in SiC content and temperature of expsoure.  相似文献   

12.
ZrB2-based ceramics with SiCw were produced by hot pressing at 1750 °C for 1 h from mixed powders after adding liquid polycarbosilane. The obtained ZrB2-SiCw composites had toughness up to 7.57 MPa m1/2, which was much higher than those for monolithic ZrB2, SiC particles reinforced ZrB2 composites, and other ZrB2–SiCw composites directly sintered at high temperatures. The added liquid polycarbosilane could reduce the sintering temperatures and restrict the reaction of matrix with whisker, which led to fewer damages to the whisker and high fracture toughness.  相似文献   

13.
ZrB2–SiC ceramics with relative densities >99% were fabricated by ‘in situ’ reactive hot pressing from ZrH2, B4C and Si. The reaction was studied using two processes, (1) powder reactions at temperatures from 1150 to 1400 °C and (2) reactive hot pressing between 1600 and 1900 °C. The products from the reaction of a 2ZrH2:1B4C:1Si molar mixture were ZrB2, SiC, ZrO2 and ZrC. Modification of the composition to 2ZrH2:1.07B4C:1.16Si resulted in the elimination of the undesired ZrO2 and ZrC phases. The final composition was approximately ZrB2–27 vol% SiC with no undesired phases detected by X-ray diffraction, and only low concentrations of B4C detected by scanning electron microscopy. Elimination of the undesired phases was accomplished by removing surface oxides through chemical reactions at elevated temperatures. Reactively hot pressed samples consisting of ZrB2 with 27 vol% SiC had a Young's modulus of 508 GPa, a flexure strength of 720 MPa, a fracture toughness of 3.5 MPa m1/2 and a Vickers’ hardness of 22.8 GPa.  相似文献   

14.
《Ceramics International》2016,42(7):8000-8004
B4C–30 vol% ZrB2 and B4C–30 vol% ZrB2–10 vol% SiC ceramics were prepared using hot pressing, and their room temperature flexural strength, high temperature flexural strength and oxidation behavior were investigated and compared each other. Both room temperature and high temperature flexural strength were improved by adding SiC particles. The oxidation mechanism was also studied, showing the oxidation product of SiC sealed the porosity and cracks, which was helpful to high temperature strength and oxidation resistance improvement.  相似文献   

15.
《Ceramics International》2017,43(12):8982-8988
Damage of structural components of hypersonic vehicles by atmospheric particles demands thorough understanding on their wear behavior. In the present work, dense ZrB2-SiC (10, 20, and 30 vol%) composites are prepared by spark plasma sintering at 55 MPa in two stages: 1400 °C for 6 min followed by 1600 °C for 2 min. With increase in SiC content, microstructures of sintered composites reveal strongly bonded ZrB2 grains with SiC particles. A combination of maximum hardness of 23 GPa, elastic modulus of 398 GPa and fracture toughness of 5.4 MPa m1/2 are obtained for the composite containing 30 vol% SiC particles. It is found that cracks are bridged or deflected by SiC particles in the composites. When the composites are subjected to SiC particle erosion at 800 °C, a 14% decrease in erosion rate is obtained with increase in SiC content from 10 to 30 vol%. The formation of large extent of boro-silicate rich viscous surface on eroded surfaces is attributed to reduced fracture or removal of ZrB2 grains of the composites with increased SiC content.  相似文献   

16.
《Ceramics International》2016,42(12):14066-14070
Ultrahigh temperature ZrB2-SiCw-Graphene ceramic composites are fabricated by hot pressing ZrB2-SiCw-Graphene oxide powders at 1950 °C and 30 MPa for 1 h. The microstructures of the composites are characterized by Scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The results show that multilayer graphene nanosheets are achieved by thermal reduction of graphene oxide during sintering process. Compared with monolithic ZrB2 materials, flexural strength and fracture toughness are both improved due to the synergistic effect of SiC whisker and graphene nanosheets. The toughening mechanisms mainly are the combination of SiC whisker and graphene nanosheets crack bridging, pulling out.  相似文献   

17.
The mechanical properties of zirconium diboride–silicon carbide (ZrB2–SiC) ceramics were characterized from room temperature up to 1600 °C in air. ZrB2 containing nominally 30 vol% SiC was hot pressed to full density at 1950 °C using B4C as a sintering aid. After hot pressing, the composition was determined to be 68.5 vol% ZrB2, 29.5 vol% SiC, and 2.0 vol% B4C using image analysis. The average ZrB2 grain size was 1.9 μm. The average SiC particles size was 1.2 μm, but the SiC particles formed larger clusters. The room temperature flexural strength was 680 MPa and strength increased to 750 MPa at 800 °C. Strength decreased to ~360 MPa at 1500 °C and 1600 °C. The elastic modulus at room temperature was 510 GPa. Modulus decreased nearly linearly with temperature to 210 GPa at 1500 °C, with a more rapid decrease to 110 GPa at 1600 °C. The fracture toughness was 3.6 MPa·m½ at room temperature, increased to 4.8 MPa·m½ at 800 °C, and then decreased linearly to 3.3 MPa·m½ at 1600 °C. The strength was controlled by the SiC cluster size up to 1000 °C, and oxidation damage above 1200 °C.  相似文献   

18.
《Ceramics International》2017,43(14):10691-10697
Al2O3 multi-phase composites with different volume fractions of SiC varying from 0 vol% to 30.0 vol% were fabricated by vacuum hot pressing sintering at 1600 °C under the pressure of 30 MPa for 2.0 h. The aim of this work was to investigate the effect of SiC content on the morphology and mechanical properties of the Al2O3 multi-phase composite. The results show that the addition of SiC and Ti can produce new strengthening and reinforcing phases include Ti3SiC2, TiC, Ti5Si3, which would hamper the migration of grain boundaries and promote sintering. The mechanical performances could reach the comprehensive optimal values for 20.0 vol% SiC, delamination and transgranular fracture being the major crack propagation energy dissipation mechanisms.  相似文献   

19.
《Ceramics International》2017,43(13):9699-9708
ZrB2–SiC composite ceramics were doped with 0, 1, 3 and 5 wt% Si3N4 plus 1.6 wt% carbon (pyrolized phenolic resin) as sintering aids and fabricated by hot pressing process under a relatively low pressure of 10 MPa at 1900 °C for 2 h. For a comparative study, similar ceramic compositions were also prepared by pressureless sintering route in the same processing conditions, with no applied external pressure. The effect of silicon nitride dopant on the microstructural evolution and sintering process of such ceramic composites was investigated by a fractographical approach as well as a thermodynamical analysis. The relative density increased by the addition of Si3N4 in hot pressed samples as a fully dense composite was achieved by adding 5 wt% silicon nitride. A reverse trend was observed in pressureless sintered composites and the relative density values decreased by further addition of Si3N4, due to the formation of gaseous products which resulted in the entrapment of more porosities in the final structure. The formation of ZrC phases in pressureless sintered samples and layered BN structures in hot pressed ceramics was detected by HRXRD method and discussed by fractographical SEM-EDS as well as thermodynamical analyses.  相似文献   

20.
ZrB2–SiC composites were prepared by spark plasma sintering (SPS) at temperatures of 1800–2100 °C for 180–300 s under a pressure of 20 MPa and at higher temperatures of above 2100 °C without a holding time under 10 MPa. Densification, microstructure and mechanical properties of ZrB2–SiC composites were investigated. Fully dense ZrB2–SiC composites containing 20–60 mass% SiC with a relative density of more than 99% were obtained at 2000 and 2100 °C for 180 s. Below 2120 °C, microstructures consisted of equiaxed ZrB2 grains with a size of 2–5 μm and α-SiC grains with a size of 2–4 μm. Morphological change from equiaxed to elongated α-SiC grains was observed at higher temperatures. Vickers hardness of ZrB2–SiC composites increased with increasing sintering temperature and SiC content up to 60 mass%, and ZrB2–SiC composite containing 60 mass% SiC sintered at 2100 °C for 180 s had the highest value of 26.8 GPa. The highest fracture toughness was observed for ZrB2–SiC composites containing 50 mass% SiC independent of sintering temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号