首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   

2.
严学华  尹君  程晓农 《硅酸盐通报》2012,31(2):271-274,284
采用磁控溅射法在Si基片上沉积非晶态Ta-C-N薄膜。利用纳米压痕仪表征其纳米硬度和弹性模量;摩擦磨损实验检测其摩擦学性能;光学轮廓仪和扫描电镜观察磨痕形貌。结果表明:Ta-C-N薄膜具有较高的纳米硬度9.45 GPa和弹性模量225.71 GPa,同时具有较低的摩擦系数0.238,磨损率5.94×10-6 mm3.N-1.m-1,磨面较为平整光滑,体现了优越的摩擦磨损性能。  相似文献   

3.
《Ceramics International》2016,42(6):6682-6691
Cadmium sulfide (CdS) thin film consisting of nanowires over a flat CdS thin film were synthesized by depositing cadmium hydroxide [Cd(OH)2] nanowires (NW) bundles, followed by conversion to sulfide phase by using ion exchange route at room temperature (300 K) based on negative free energy of formation. The influence of post annealing treatment on as-deposited CdS NW films has been studied in the temperature range 423–523 K through the observation of nanowires alignments. The annealing effect on the intrinsic properties have been studied in relation with the crystallites sizes, micro strain, dislocation density and optical band gap of the deposited films. Furthermore, the behavior of inter- and intramolecular hydroxide ion (OH) has been investigated from FTIR analysis. Additionally, the effects of post annealing on photovoltaic device performance has been scrutinized and the obtained results were correlated with structural and optical properties.  相似文献   

4.
The present work describes structural, morphological, and antibacterial properties of thin film coatings based on tungsten oxide material on stainless-steel substrates. Thin films were prepared by RF magnetron sputtering of W targets in the oxygen/argon plasma environment in 60 W sputtering power. The characterization of the specimens was made on the basis of microstructure and antibacterial properties of the thin films surface. The effect of O2/Ar ratio on the structure, morphology, and antibacterial properties of the tungsten oxide thin films was studied. Methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) were used to assess the properties of deposited thin films. XRD peak analysis indicates (100) and (200) of WO3 phase with hexagonal structure. Moreover, the micro-strain, grain size, and dislocation density were obtained. It is noteworthy that by increasing the oxygen percentage from 10% to 20%, the grain size decreases from 81 to 23 nm while the film micro-strain and dislocation density increases. The SEM results illustrates that tungsten oxide thin films are made of interconnected nano-points in a chain shape with sphere-shaped grains with diameter variation from 10 to 100 nm. The FTIR spectra displays four distinct bands corresponds to O–W–O bending modes of vibrations and W–O–W stretching modes of the WO3 films. The antibacterial effects of tungsten oxide thin films on steel stainless substrate against Escherichia coli bacteria are also examined for the first time and our observation shows that the number of bacteria on all tungsten oxide samples decreases after 24 h. The samples exhibit an excellent antibacterial performance. This paper renders a strategy through which the tungsten oxide thin films for antibacterial purpose and proposes that WO3 thin films are ideal for various medical applications including stainless steel medical tools, optical coatings, and antibacterial coatings.  相似文献   

5.
In this work, the near-frictionless carbon (NFC) thin films developed at Argonne National Laboratory were annealed at 100 °C, 150 °C, 200 °C, 400 °C, and 600 °C in nitrogen atmosphere. The changes of the NFC mechanical properties were measured with both static and dynamic nanoindentation methods. It was found that the Young's modulus and hardness decreased with increasing annealing temperatures. Raman spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the film's structural change before nanoindentation testing. Raman characterization indicated that the G peak shifted upwards as the annealing temperature was increased above 150 °C, which indicated decreasing sp3 content. The intensity of the D peak was shown to increase with annealing temperature indicating that the NFC film became more graphite-like. AFM analysis showed an increase of sp2 clustering with annealing temperature, which resulted in an increase in surface roughness. SEM characterization indicated that as the films were annealed large cracks and numerous pinholes were generated. The characterization results were in good agreement with the measured mechanical properties.  相似文献   

6.
The effects of thermal annealing and Si incorporation on the structure and properties of diamond-like carbon (DLC) films were investigated. As-deposited DLC film (DLC) and Si incorporated DLC film (Si-DLC), both with and without thermal annealing, were analyzed for bonding structure, residual stress, film thickness, elastic modulus and fracture properties using Raman spectroscopy, wafer curvature, nanoindentation, four-point bend fracture testing, and X-ray photoelectron spectroscopy (XPS). Raman spectroscopy clearly showed that thermal annealing of DLC films promotes more sp2 bonding character, whereas Si incorporation into the films promotes more sp3 bonding character. Interfacial fracture energies, film hardness and elastic modulus, and residual film stress were all found to vary strongly with the degree of sp3 bonding in the DLC film. These changes in mechanical properties are rationalized in terms of the degree of three dimensional inter-links within the atomic bond network.  相似文献   

7.
《Ceramics International》2016,42(7):8085-8091
Preparation, growth, structure and optical properties of high-quality c-axis oriented non-vacuum Er doped ZnO thin films were studied. Zn1−xErxO (x=0.0, 0.01, 0.02, 0.04, and 0.05) precursor solutions were prepared by sol–gel synthesis using Zn, and Er based alkoxide which were dissolved into solvent and chelating agent. Zn1−xErxO thin films with different Er doping concentration were grown on glass substrate using sol–gel dip coating. Thin films were annealed at 600 °C for 30 min, and tried to observe the effect of doping ratio on structural and optical properties. The particle size, crystal structure, surface morphologies and microstructure of all samples were characterized by X-Ray diffraction (XRD) and Scanning Electron Microscope (SEM). The UV–vis spectrometer measurements were carried out for the optical characterizations. The surface morphology of the Zn1−xErxO films depend on substrate nature and sol–gel parameters such as withdrawal speed, drying, heat treatment, deep number (film thickness) and annealing condition. Surface morphologies of Er doped ZnO thin films were dense, without porosity, uniform, crack and pinhole free. XRD results showed that, all Er doped ZnO thin films have a hexagonal structure and (002) orientation. The optical transmittance of rare earth element (Er) doped ZnO thin films were increased. The Er doped ZnO thin films showed high transparency (>85) in the visible region (400–700 nm).  相似文献   

8.
Transparent ZnO and Al-doped ZnO (AZO) thin films have been prepared by radio frequency sputtering deposition at room temperature. The optical, electrical, and structural characteristics of the obtained films have been extensively investigated as a function of sputtering and annealing parameters. Spectrophotometry, X-ray diffraction (XRD), atomic force microscopy (AFM), four-point probe and Hall-effect measurements were employed. The ZnO films generally exhibited excellent crystalline properties, while providing a UV cut-off in the absorption spectrum for optical filtration. AZO thin films exhibited an average transparency (larger than 85%) over the visible region of the spectrum, and resistivity of the order of 10?3 Ω cm was obtained. The carrier concentration and electron mobility values proved to be dependent on the deposition parameters and annealing temperature. The obtained results showed that annealing temperatures higher than 400 °C were not necessary and potentially degraded the electronic properties of the AZO thin films.  相似文献   

9.
Mechanical properties of the a-CN films including elastic modulus (Er), hardness (H), elastic recovery (R), contact stiffness (S) and deformation energies were measured by a nanoindentation system. We also evaluated wear resistant behavior of the layered a-CN films in nanometer scale by the same nanoindentation system. All the a-CN films, irrespective of Vb, showed better wear-resistance characteristics than sapphire and quartz. The a-CN (− 300 V)/Si sample showed the best wear-resistance, although its hardness was lower than the a-CN (− 300 V)/a-C (− 100 V)/Si. The wear resistant characteristic of the films can be understood by considering the other mechanical properties including that of R, hardness-to-elastic modulus ratio (H / Er), and elastic deformation energy (We) obtained from the nanoindentation. These various nanomechanical properties certainly govern the wear-resistance of the film.  相似文献   

10.
《Ceramics International》2019,45(14):17363-17375
TiWSixN films were deposited using a magnetron co-sputtering system on silicon (111), 316L stainless steel, and M2 high-speed steel substrates. The silicon target current density was varied from 0 mA/cm2 to 4.32 mA/cm2 in order to modify the Si content in the films. The microstructure and chemical composition were determined by means of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The surface of the films was explored via scanning electron microscopy (SEM) and atomic force microscopy (AFM). Mechanical, tribological, and thermal properties were investigated by means of the nanoindentation, ball-on-disc, and cyclic oxidation tests, respectively. Our results indicated that as the silicon target current density was increased, the microstructure changed from crystalline to amorphous, and the hardness and elastic modulus improved from initial values of 7.5 ± 0.3 GPa and 181 ± 8 GPa to 15 ± 1 GPa and 229 ± 9 GPa, respectively. Furthermore, films deposited at high silicon target current exhibited better resistance to thermal oxidation. The failure mechanism of the WTiSixN thin films under cyclic oxidation was attributed to the microstructure of the films, WO3 sublimation, and the thermal coefficient mismatch between the film and the substrate.  相似文献   

11.
The silver (Ag) thin films were deposited on silicon substrates by DC magnetron sputtering method under different substrate temperatures of 100–500?°C. Then the as-deposited films were subjected to annealing treatment. The XRD results revealed that the Ag thin films have a good nanocrystalline structure and a considerable increase in the crystallinity of Ag (111) peak was observed at substrate temperature of 200?°C. The average crystalline size of Ag films varied between 18 and 44 nm which confirms the presence of nanocrystal’s in the films. The AFM and SEM images demonstrated that the grain size and surface roughness of the films are sensitive to substrate temperature during deposition of the films and annealing treatment. The SEM results is in good agreement with the results of XRD and AFM analysis.  相似文献   

12.
ZnO thin films were prepared on quartz glass substrates by different sol-gel methods using a spin-coating technique. The structural and optical properties of ZnO thin films were studied by X-ray diffraction (XRD) and transmission spectra analysis. The results show that different factors such as Zn2+ concentration, solvent, sol stabilizer, pre-heat treatment temperature, and annealing temperature have a great impact on the structural and optical properties of ZnO thin films.  相似文献   

13.
In the present study, nanostructured zinc oxide (ZnO) films have been successfully synthesized using fruit extract of Viburnum opulus L. (VO) on glass slides by successive ionic layer adsorption and reaction (SILAR) procedure. The impact of VO concentrations on the structural, morphological, optical, electrical, and antibacterial attributes of ZnO films has been investigated in detail. The samples' XRD patterns present a hexagonal crystal structure with a preferential orientation along the (002) plane. The crystallite size values of ZnO samples were found to be in the ranges from 14.88 to 9.23 nm. The supplementation of VO to the synthesis solution remarkably affected the surface morphological features of the ZnO films. The optical results demonstrated that band gap energy values of the ZnO films at room temperature were decreased from 3.20 to 3.07 eV as a function of VO content in the bath solution. The films' electrical properties were determined by impedance analysis in the frequency range of 20 Hz ?1 MHz. Impedance-frequency measurements showed VO insertion to ZnO thin films cause an increase in impedance value at the low frequencies. Cole-Cole plots with a single semi-circle confirmed the contribution of grain and grain boundary for the electrical conduction process. The agar disk diffusion method was used to test the antibacterial properties of ZnO/VO inserted ZnO and inhibition zones were measured. VO inserted ZnO showed a stronger inhibitory effect on gram-positive bacteria Staphylococcus aureus (ATCC 25923) and gram-negative bacteria Escherichia coli (ATCC 35218) than ampicillin antibiotic used as a control group. In line with the promising bactericidal results of a new generation, VO inserted ZnO, the nanostructured product with this study, it can also be applied in multidrug-resistant clinical isolates obtained from patients.  相似文献   

14.
《Ceramics International》2017,43(9):7115-7122
Zinc oxide (ZnO) thin films were sol-gel spin coated on glass substrates and annealed at various temperatures from 300–500 °C. Zinc acetate dihydrate (ZAD), monoethanolamine (MEA), and 2-methoxyethanol were used as the starting materials, stabilizer and solvent, respectively. The effect of annealing temperature on the structural and optical properties of the ZnO thin films was investigated by X-ray diffractometer (XRD), atomic force microscope (AFM), UV–VIS spectrophotometry and ellipsometry. The XRD results showed the films to have a preferential c-axis orientation, whereas the AFM results confirmed a columnar structure. The surface roughness increased with the increase in annealing temperature. Parameters such as ratio of free charge carrier concentration to effective mass (N/m*) and plasma frequency (ωp) were determined from the transmittance graph using the Wemple di Domenico model. Both N/m* and ωp were noticed to reduce with the increase in annealing temperature. Band gap decreased with the increase in the annealing temperature indicating absorption edge shift towards the red region.  相似文献   

15.
《Ceramics International》2017,43(4):3900-3904
Thin films comprising 0.5 mol% aluminum-doped zinc oxide (AZO) were prepared on glass substrates by a spin-coating method for transparent conducting oxide (TCO) applications. UV laser was selected for the annealing of AZO thin films, due to the well matched energy bandgap between UV laser and AZO films. After the rapid thermal annealing (RTA) process, post UV laser annealing was carried out by varying the scan speed of the laser beam, and the effects of laser annealing on the structural, morphological, electrical, and optical properties were analyzed. The results indicated that UV laser annealing based on various scan speeds affects the microstructure, sheet resistance, and optical transmittance of the AZO thin films, compared with those of the only RTA processed thin films. X-ray diffraction (XRD) analysis showed that all films that preferentially grew normally on the substrate had a (002) peak. The optical transmittance spectra of the laser/RTA annealed AZO thin films exhibited greater than 83% transmittance in the visible region. Also, the sheet resistance (1.61 kΩ/sq) indicated that optimized UV laser annealing after the RTA process improves film conductance.  相似文献   

16.
Hydrogen-free amorphous carbon (a-C) films prepared by RF magnetron sputtering were deposited on Si substrates in thin films, at various negative bias voltages Vb (i.e. Ar-ion energies), and in thick layered-structure films with alternative values of Vb. The main purposes of this work are to present preliminary results concerning the effect of Ar-ion bombardment during deposition on the elastic properties of thin a-C films with Ar+ energies in the range 30–200 eV, and the adhesion failure which limits their thickness and usefulness for practical applications, and the enhancement of hardness and scratch resistance of sputtered a-C films developed in a layered structure. The results show a significant improvement in the elastic properties of layered structure films and their stability. The combination of high hardness and relative low elastic modulus which the layered films exhibit make them more resistant to plastic deformation during contact, as confirmed by scratch testing.  相似文献   

17.
A series of the exfoliated or intercalated PU/organoclay nanocomposite thin films were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The surface mechanical properties of the PU/organoclay nanocomposite films were investigated by means of nanoindentation. The results show that the hardness, elastic modulus and scratch resistant of the nanocomposites dramatically improved with the incorporation of organoclay. This improvement was dependent on the clay content as well as the formation structure of clay in the PU matrix. At 3% clay content, the hardness and elastic modulus of intercalated nanocomposites increased by approximately 16% and 44%, respectively, compare to pure PU. For exfoliated nanocomposite, the improvements in these properties were about 3.5 and 1.6 times higher than the intercalated ones. The exfoliated PU nanocomposites also had greater hardness and showed better scratch resistance compared to the intercalated ones.  相似文献   

18.
This study reports the surface roughness and nanomechanical characteristics of ZnO thin films deposited on the various substrates, obtained by means of atomic force microscopy (AFM), nanoindentation and nanoscratch techniques. ZnO thin films are deposited on (a- and c-axis) sapphires and (0001) 6H-SiC substrates by using the pulsed-laser depositions (PLD) system. Continuous stiffness measurements (CSM) technique is used in the nanoindentation tests to determine the hardness and Young’s modulus of ZnO thin films. The importance of the ratio (H/E film) of elastic to plastic deformation during nanoindentation of ZnO thin films on their behaviors in contact-induced damage during fabrication of ZnO-based devices is considered. In addition, the friction coefficient of ZnO thin films is also presented here.  相似文献   

19.
《Ceramics International》2016,42(7):7918-7923
In this paper, we report the fabrication and systematic characterization of Fe Doped ZnO thin Films. FexZn1−x O (x=0<0.05) films were prepared by RF magnetron sputtering on Si (400) substrate. Influence of Fe doping on structural, optical and magnetic properties has been studied. The X-ray diffraction (XRD) analysis shows that Fe doping has affected the crystalline structure, grain size and strain in the thin films. The best crystalline structure is obtained for 3% Fe Doping as observed from Atomic Force Microscopy (AFM) and X-ray diffraction (XRD). The magnetic properties studied using Vibrating Sample Magnetometer reveals the room temperature ferromagnetic nature of the thin films. However, changing the Fe concentration degrades the magnetic property in turn. The mechanism behind the above results has been discussed minutely in this paper.  相似文献   

20.
Nanocrystalline Fe–Ni–P thin films have been prepared by electrodeposition method for different temperature. The structural, morphological, mechanical and magnetic properties are analyzed by different measurements. The structural and surface morphology of thin film were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD results showed all the electro deposited Fe–Ni–P films exhibits nanocrystalline FCC structure. The SEM pictures of Fe–Ni–P thin films show that the deposits of thin films are crack free, uniform and bright surface. The mechanical properties of Fe–Ni–P thin films have been analyzed by VHT. The electroplated Fe–Ni–P thin films were strongly adherent to the copper substrate. The VHT result of Fe–Ni–P thin films shows that thin film coated at high bath temperature has highest hardness value. Also VSM result shows that thin film coated at high bath temperature has higher magnetization value. This shows that the soft magnetic properties of Fe–Ni–P thin films are greatly enhanced by various temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号