首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) are of great interest due to their potential application as bone-replacement materials. In particular, composites made of a mixture of these Ca-phosphates revealed improved mechanical properties; however, the reason for this improvement is unknown. Future development and properties enhancement of such bioceramics is linked to the possibility to characterise their particular microstructure. In this context, the ability to quickly identify individual grains of HA and β-TCP within these composites will allow acquiring information about the phase distributions and the phase-boundary microstructure. The aim of the present study is, therefore, to demonstrate that electron energy-loss spectroscopy (EELS) can be successfully employed to differentiate between individual grains of HA and β-TCP. In particular, the analysis of the near-edge structure of the oxygen K-ionisation edge allows detection of a characteristic signal at ca. 536 eV that can be employed as an identification tool for HA. EELS investigations were performed first on as-received and calcined (1000 °C) HA and β-TCP powders and subsequently on pure bulk HA and β-TCP samples sintered at 1250 °C. Finally, this method was successfully applied to a HA/β-TCP (50/50 wt.%) composite sintered at 1250 °C.  相似文献   

2.
《Ceramics International》2017,43(15):11780-11785
Porous hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic scaffolds with a uniform unidirectional pore structure were successfully fabricated by an ice-templating method by using Ca-deficient HA whiskers and phosphate bioglass. HA whiskers showed good dispersibility in the slurry and favoured the formation of interconnected pores in the scaffolds. Addition of bioglass powders enhanced the material sintering process and the phase transformation of Ca-deficient HA to β-TCP. Calcium-phosphate-based scaffolds with a composition from HA to an HA/β-TCP complex could be obtained by controlling the freezing moulding system and slurry composition. The fabricated scaffolds had a porosity of 75–85%, compressive strength of 0.5–1.0 MPa, and a pore size range of 130–200 µm.  相似文献   

3.
《Ceramics International》2016,42(9):10638-10644
In this study, ceramics containing mixed phases of hydroxyapatite/beta-tricalcium phosphate (HA/β-TCP) were fabricated by a solid-state reaction technique. The HA powder was synthesized from cockle shells while the β-TCP powder was synthesized from egg shells. Pure HA and β-TCP fine powders were successfully obtained. The HA and β-TCP were mixed and subjected to a thermal treatment up to 1100 °C. To form the mixed phase ceramics, the resulting powders were sintered at 1350 °C. Effects of HA concentration on the properties of the studied ceramic were investigated. X-ray diffraction analysis revealed that all samples presented multiphase of calcium phosphate compounds. Average grain size of the ceramics decreased with the HA additive content. The 75 wt% HA ceramic showed the maximum hardness value (5.5 GPa) which is high when compared with many calcium phosphate ceramics. In vitro bioactivity test indicated that apatite forming increased with the HA additive content. To increase antibacterial activity, selected ceramics were coated with AgNO3. Antibacterial test suggested that an Ag compound coating on the ceramics could improve the antibacterial ability of the studied ceramics. In addition, the antibacterial ability for the Ag coated ceramics depended on the porosity of the ceramics.  相似文献   

4.
Biodegradable calcium phosphate composites consisting of tricalcium phosphate (α-TCP) and hydroxyapatite (HA) were prepared using a two-step sintering method. The ratio of α-TCP/HA was controlled by modulating the sintering temperature. The initial calcination process at 800 °C causes HA dehydroxylation and induces the early transformation of HA into α-TCP in subsequent sintering processes. At the optimum sintering temperature of 1300 °C, the material is comprised of a moderate ratio of α-TCP to HA (3:7) and possesses a hardness of 5.0 GPa. The high temperature phase transformation from HA to α-TCP accompanied by bonded water loss, which results in the formation of nano-pores within the α-TCP matrix, hardly deteriorated the mechanical strength of the composite. This pore-containing structure also provided a convincing evidence for the origin of the high degradability of α-TCP in a biological environment.  相似文献   

5.
The impact of weak stoichiometry variations on β-TCP sintering behaviour was studied. β-Tricalcium phosphate (β-TCP) powders were synthesised by chemical precipitation through aqueous solution of diammonium phosphate and calcium nitrate. Excess or deficiency of nitrate salt leads to compositions with Ca/P ratios below or over 1.5. These powders, calcined at various temperatures (800–950 °C), were shaped by slip casting process and sintered at 1100 °C. The microstructure, phase composition, specific surface area and density of powders and sintered compacts were analysed by SEM, XRD, FTIR, BET, Archimedes methods and dilatometry.This study shows that the presence of calcium pyrophosphate or the hydroxyapatite phases affects considerably the physical characteristics of the β-TCP powders and in particular specific surface area and consequently their sinterability.A precise determination of the β-TCP chemical composition after synthesis allows to adapt the calcination temperature of the raw powder in order to obtain a maximum densification of the compact. The beneficial role of small quantity of HA phase inside β-TCP powder on their sinterability was also shown in this work.  相似文献   

6.
The collapse of sintered hydroxyapatite (HA) has been attributed to HA decomposition; however, the detailed variations in microstructure are still unclear. Two phase transformation routes of HA decomposition during sintering were identified by transmission electron microscopy in this study. In the first route, HA is transformed to tetracalcium phosphate and needle-like β-tricalcium phosphate which is subsequently converted to α-tricalcium phosphate (α-TCP) above 1100 °C. In the second route, HA is transformed directly to α-TCP and calcium oxide at 1400 °C, accompanied by nanopore formation. In the second route, the α-TCP grew with a preferred orientation to form stripe-like grains. Further holding at 1400 °C for 4 h resulted in recrystallization; i.e., equi-axial grains formed within a stripe-like grain. Nanopore defects dispersed in the α-TCP grains are the main factor for the low density and decreased mechanical strength of the sintered bulk.  相似文献   

7.
《Ceramics International》2015,41(6):7596-7604
Porous calcium-phosphate bioceramics are very important materials in bone tissue engineering. Recently, microsphere systems have been widely utilized in the treatment of defective tissues, including bone, cartilage and muscle. In this study, porous calcium-phosphate microspheres were prepared from calcium-deficient hydroxyapatite (d-HA) powders through a water-in-oil emulsion technique using camphene as the porogen and subsequently sintered at 700, 1100, 1200, or 1400 °C for 6 h. The microspheres produced in this study were characterized according to their morphology, properties, and biodegradation. The results indicated an interconnected porous structure with pore sizes ranging between several microns to as large as 250 μm. Approximately 35–50% of the pores were larger than 100 μm. In the microspheres sintered at 700 °C (Sample H), only the hydroxyapatite (HA) phase was present; when heated to 1100 °C (Sample BH), β-TCP was observed with HA; at 1200 °C (Sample ABH), the phase compositions included β-TCP and α-TCP, as well as a small quantity of HA; and at 1400 °C (Sample AH), the phases of samples included mainly α-TCP and HA. The degradation of the scaffolds was evaluated after immersion in distilled water for up to 28 days. Obvious dissolution and precipitation behavior was seen in the samples ABH and AH. The precipitates formed on the surface of ABH and AH could be carbonate-containing calcium-deficient HA (carbonated-CDHA) after immersion in distilled water for 28 days.  相似文献   

8.
《Ceramics International》2016,42(9):11201-11208
In this research, biphasic calcium phosphate (BCP), comprising 70 wt% of beta tricalcium phosphate and 30 wt% of hydroxyapatite, was mixed with different amounts of 3 mol% yttria-stabilized zirconia (3YSZ) and sintered at 1200 °C to produce toughened bone substitutes. The fracture toughness (KIc) of the obtained bodies was determined using the indentation-strength fracture method. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis were utilized to study the microstructure of the samples. The phase composition of the samples was also determined using X-ray diffraction technique. In order to investigate the cell supporting ability of the samples, G-292 cells were cultured on them and cell morphology was evaluated after 48 h. Based on the results, the maximum fracture toughness and compressive strength values (i.e., 2.11 MPa m0.5 and 150 MPa, respectively) were obtained for the sample containing 3 vol% of 3YSZ. The obtained fracture toughness value was approximately two times higher than that of the original BCP (1.07 MPa m0.5) and also was comparable with that of the cortical human bone. The following mechanisms for the improved KIc of the β-tricalcium phosphate were determined: Grain bridging of 3YSZ particles during crack growth resistance, formation of microcracks on the tip of the larger cracks, absorbing crack extension energy due to the volume expansion during 3YSZ tetragonal-monoclinic transformation and crack deflection by the presence of 3YSZ particles. Also, 3YSZ additive encourages transformation of HA phase into β-TCP during sintering BCP. Finally, based on the cell studies, the samples exhibited an adequate cell attachment and a good cell spreading condition.  相似文献   

9.
《Ceramics International》2017,43(15):12213-12220
The aim of this research is to observe the physicochemical characterization and evaluate the biocompatibility of the HA/β-TCP biphasic calcium phosphate ceramics (BCP) produced from fish bones. In addition, the mechanism of the formation of BCP after calcination of fish bones was discussed. Three kinds of fish bones (Salmo salar, Anoplopoma fimbria and Sardine) were prepared and calcined for one hour at different temperatures ranging from 600 °C to 1100 °C in a muffle furnace. The calcined bones were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (GTA), inductively coupled plasma optical atom emissions spectroscopy (ICP-OES), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). The in vitro cytotoxicity assessment was used to evaluate the biocompatibility of the biphasic ceramics. BCP materials were produced from all kinds of fish bones by calcination above 700 °C, the carbonated hydroxyapatite and multiple trace element were also found in the calcined bones. With the increase of temperature, the ratio of HA/β-TCP varied and the major organic components were progressively removed. The carbonated hydroxyapatite disappeared when temperature rises above 900 °C. Rising temperature also caused crystal growth that eventually gave rise to the increase of the BCP grain size and influenced the mesoporous structure. The BCP materials were confirmed to have no obvious cytotoxicity to mesenchymal stem cells (MSC) in the in vitro cytotoxicity assessment. Calcium-deficient hydroxyapatite(CDHA) may make up the major inorganic constituent of fish bones that could decompose to HA and β-TCP when calcined above 700 °C. 800–900 °C is considered to be the optimal temperature to fabricate BCP materials which contain more β-TCP, carbonated hydroxyapatite and retain distinct mesoporous structure while has good biocompatibility. With the unique composition and structure, these three kinds of fish-bone-derived BCP materials can be further applied to fabricate bioceramic scaffolds for biomedical applications.  相似文献   

10.
《Ceramics International》2007,33(6):979-985
Nano-size β-TCP powders with average grain size of 100 nm were prepared by the precipitation method. The sinterability of the nano-size powders, and the microstructure, mechanical strength and the in vitro degradability of the prepared β-TCP bioceramics were investigated. The results showed that the nano-size powders possessed superior sintering properties as compared to the micro-size powders. The densification temperature and phase transition temperature of β-TCP bioceramics prepared using nano-size powders was clearly lower than that prepared using micro-size powders, and the maximum value of the bending strength, elastic modulus, Vickers hardness and compressive strength of the samples fabricated from nano-size powders were more than two-times higher as compared to those of samples fabricated from micro-size powders. Furthermore, the degradability of the β-TCP bioceramics fabricated from nano-size powders was much lower than for micro-size powders, suggesting the possible control of the degradability of the bioceramics by regulating powder size.  相似文献   

11.
A two-step doping strategy was applied to the synthesis of La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM1020) powder by a gel combustion method. The Mg-doped LaGaO3 powder was prepared in the first step, and Sr incorporation in the Mg-doped LaGaO3 powder was done in the second step to obtain the final LSGM1020 powder. The two-step procedure is effective in preparing higher purity powders than the traditional one-step procedure. Rietveld refinement of X-ray powder diffraction (XRD) patterns shows that incorporation of Mg in LaGaO3 in the first step enlarges the LaGaO3 lattice: this facilitates the incorporation of Sr in the second doping step and thus high purity powder is obtained. Relatively phase pure LSGM1020 powder with only 3.1% of LaSrGaO4 was obtained after calcination at 1300 °C for 5 h. Therefore, the two-step doping strategy is an effective procedure for the preparation of LSGM powders with high Sr- and Mg-doping levels.  相似文献   

12.
The effect of the sintering conditions (temperature and time) on the microstructure (density and grain size) and mechanical properties (hardness, elastic modulus, and strength) of β-tricalcium phosphate (β-TCP) bioceramics fabricated from Ca-deficient commercial powders is analyzed. Contrary to current general opinion, it is demonstrated that the optimal sintering temperature to maximize the mechanical performance of this β-TCP material is not necessarily below the β ? α transformation temperature (1125 °C). In particular, optimal performance was achieved in samples sintered at 1200 °C for 3 h, since it was not until higher temperatures or longer sintering times that microcracking develops and mechanical properties are degraded. It is argued that the residual stresses developed during this reversible transformation do not lead to microcrack propagation until sufficiently large starting flaws develop in the microstructure as a consequence of grain growth. Implications of these findings for the processing routes to improve sintering of this important bioceramic are discussed.  相似文献   

13.
Biphasic calcium phosphate particles were prepared using a rapid increase of the pH value by adding an amount of concentrated ammonia solution, into a well-mixed solution containing Ca(H2PO4)2·H2O and CaCl2 with Ca/P = 1.667 molar ratio; with or without the presence of citric acid (CiA). The precipitation of Calcium Phosphates took place at 97 °C using high-speed dispersing equipment. The samples were characterized using XRD, FT-IR, BET and SEM techniques. The thermal behaviour was studied by TG, DTG and DTA techniques. The modified precipitation method leads to the formation of biphasic needle-like particles consisted of crystalline hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). The presence of CiA in the initial solution leads to the formation of aggregated nonporous small spheroidal particles consisted of low crystallinity phases of HA and octacalcium phosphate (OCP). The later facilitates the sintering process. The calcined samples at 900 °C were consisted of calcium pyrophosphate (CPP) and TCP. α-TCP is formed in the presence of a large amount of calcium citrate complexes. The main sintering process took place at the temperature range between 750 and 1150 °C, which were strongly depended on the initial amount of the CiA in the precipitation process. These results indicated that the citrate presence in the initial solution have a strong influence on the nucleation and growth processes by complexation with calcium ions and incorporation into the solid structure during particle growth.  相似文献   

14.
Hydroxyapatite (HA) powders were synthesized by the wet precipitation method, with and without surfactant, under identical processing parameters. These powders were then heat treated at 900 °C for 3 h in air. The detailed characterization of the powders was done by using SEM, dynamic light scattering, nitrogen adsorption, XRD, Raman spectroscopy, and FTIR techniques. The HA phase, identified by well defined PO43? and OH? ion peaks in Raman and FTIR spectra, was observed in all the powder samples. The addition of surfactant changed the morphology of the particles from spherical to needle/rod-like structure and increased the surface area up to three times (from 33 to 96 m2/g). Also, suppression in the evolution of β-TCP phase was observed along with decrease in the crystal size and crystallinity of the powder due to the addition of surfactant. Synthesized nano-HA crystals were found to have diameters and lengths in the range 10–25 nm and 75–150 nm, respectively. The heat treatment changed the architecture of the particles, increased the crystallinity and reduced the surface area to ≈7 m2/g. However, the relative increase in crystallinity was much higher for the powder synthesized with surfactant. The ratio of the average crystallite size to the crystallinity degree was about 0.53±0.07 for all the powders. The particle size distribution was bimodal and coarser for the powder synthesized without surfactant. The pore size analysis showed transformation of a predominantly mesoporous structure into a meso- plus macroporous one on heat treatment. The intensity of OH? group peak in Raman spectra was found to be highly sensitive to the crystalline state of the HA powder and may be used to assess crystallinity.  相似文献   

15.
Effects of zirconium oxide (ZrO2) nanoparticles additive on the microstructure and physical properties of hydroxyapatite (HA) were investigated. The HA powder was derived from natural bovine bone by a sequence of thermal processes. The composites containing nanoparticles of ZrO2 (0.2–1.0 vol%) were fabricated by a solid-state reaction mixed oxide method. All samples showed traces of HA, beta-tricalcium phosphate (β-TCP) and alpha-tricalcium phosphate (α-TCP) phases while the x≥0.1 samples also showed ZrO2 phase. Amount of β-TCP and α-TCP phases tend to decrease with ZrO2. The additive inhibited grain growth as a result of a decrease in grain size. However, the x=0.2 sample exhibited higher hardness value which is consistent with the density data. In addition, bioactivity test suggested that the additive promoted an apatite forming with the values of Ca/P close to the value obtained from HA.  相似文献   

16.
Stoichiometric β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) powders were synthesized by chemical precipitation of aqueous solutions of diammonium phosphate and calcium nitrate. After a calcination treatment and a milling step, the powders were shaped by slip casting. The sintering temperature effect on the relative density and the average grain size was investigated. By natural sintering at 1200 and 1120 °C, densities of 98% and 99% were obtained for HA and TCP, respectively. After determination of minimum temperatures to obtain only closed porosity and a pre-sintering at these temperatures, hot isostatic pressing (HIP) treatment was carried out. Transparent or translucent samples were obtained, indicating a relative density very close to the theoretical value (>99.9%). Mechanical properties (three-point bending strength, fracture toughness, Young's modulus and Vickers hardness) were measured on both materials with similar grain size (~ 1 μm). Bending strengths of 181 and 105 MPa were measured for TCP and HA, respectively.  相似文献   

17.
β-tricalcium phosphate (β-TCP) is an ideal biomaterial for the bone repair because of its biocompatibility and biodegradability. In this study, 0 mol%, 5 mol%, 15 mol% and 30%mol bivalent manganese ion (Mn2+) doped β-TCP (Mn-TCP) powders were synthesized by a sol-gel method. The amount of the dopants significantly influences the crystallinity and the parameters related with structure of β-TCP, such as the lattice parameters and crystallite dimensions. The particle size and the particle distribution of doped β-TCP powers were evaluated as well. Meanwhile, the as-synthesized powders were consolidated by sintering at 1000 °C in muffle furnace for 5 h to get Mn-TCP porous material and the degradation experiment was carried out in Simulated Body Fluid (SBF) solution for 28 days. Then, Mn-TCP porous material were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM). Significantly, there were bone-like apatite materials deposited on the surface of bone-like porous materials. With the increasing doping amount of Mn2+, the newly formed apatite-like materials decreased, while the crystallinity increased significantly. Besides, pH results showed that alkaline environment was more favorable for the formation of sedimentary materials.  相似文献   

18.
Various kinds of calcium oxides, carbonates and phosphates were used as the raw materials, and β-TCP ceramics was fabricated by reaction sintering at 1100 °C, and the sinterability, the reaction sintering behavior and mechanical properties of reaction-sintered β-TCP were investigated. Reaction-sintered bodies using CaHPO4 + HAp consisted of single β-TCP phase, and bulk density and bending strength increased with extending sintering time. On the contrary, normal-sintered β-TCP synthesized using CaHPO4 + HAp did not change in bulk density and bending strength with extending sintering time. Reaction-sintered body using CaHPO4 + HAp as the raw materials showed higher bulk density and bending strength than normal sintered β-TCP.  相似文献   

19.
In the present work, effect of Mn doping on hydrolysis rate of low-temperature synthesized metastable α-tricalcium phosphate (α-TCP) was investigated. α-TCP powders containing different amount of Mn2+ ions (0, 0.5 and 1 mol%) were synthesized by wet co-precipitation process, followed by annealing and crystallization of as-precipitated amorphous calcium phosphate at 700 °C. It was demonstrated that the presence of Mn2+ ions significantly retards hydrolysis rate of α-TCP. While pristine α-TCP fully hydrolyzed with a conversion to calcium-deficient hydroxyapatite in 10 h, complete hydrolysis of α-TCP doped with 0.5 and 1 mol% of Mn occurred only after 20 and 35 h, respectively. Initial and final products were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). Chemical composition of starting and fully hydrolyzed α-TCP powders was determined by inductively coupled plasma optical emission spectrometry (ICP-OES).  相似文献   

20.
《Ceramics International》2017,43(15):12263-12269
This study investigates the properties of sol-gel derived sodium (Na)-doped hydroxyapatite (HA) powder. Different amounts of Na (1, 5, 10 and 15 mol%) were prepared and the sintered bodies were characterized to determine the current phases, microstructural evolution and mechanical properties. X-ray diffraction analysis reveals that a phase pure HA of crystallite sizes, which varied from 35 nm to 65 nm, was obtained in the synthesized powder after calcining from 500 °C to 1000 °C. Scanning electron microscopy examination shows evidence of larger particle sizes, particularly in samples that contain higher amounts of Na concentration. The resultant powders were subsequently used to prepare porous NA-doped HA bodies through a polymeric sponge method. The addition of 5% Na resulted in a porous body with 27% porosity and was beneficial in enhancing the compressive strength of HA 17-fold compared with undoped HA. The prepared scaffold also shows suitable pore interconnectivity with pore sizes that vary between 100 and 300 µm which is suitable for use as porous bone substitutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号