首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(12):17270-17278
The structural, magnetic, and dielectric properties of spinel Magnesium (Mg) doped Nickel chromite (NiCr2O4) nanoparticles (NPs) have been studied in detail. The X-ray powder diffraction exhibited normal spinel phase formation of MgxNi1-xCr2O4 (x = 0, 0.2, 0.4, 0.6, and 1) NPs with a maximum average crystallite size of about 44 nm for x = 0.2 composition. The FTIR spectra of these NPs revealed the characteristic Ni–O and Mg–O and Cr–O bands around 639 cm?1 and 497 cm?1, respectively which confirmed the spinel structure. Temperature-dependent zero field cooled and field cooled graphs of NiCr2O4 NPs showed phase changes from ferrimagnetic to paramagnetic state at 86 K, while MgCr2O4 NPs showed antiferromagnetic (AFM) transition at Neel temperature (TN) at 15 K due to corner-sharing of Cr3+ ions at a tetrahedral lattice site resulting in a highly magnetic frustrated structure. The field dependent magnetization (M ? H) loops of MgxNi1-xCr2O4 NPs confirmed the competing AFM interactions and ferrimagnetic interactions resulting in a sharp decreased saturation magnetization with Mg doping. Dielectric constant, dielectric loss, and ac conductivity of these NPs showed size-dependent variation and depicted maximum value at x = 0.2 Mg concentration. In summary, the magnetic and dielectric properties of Mg doped NiCr2O4 NPs were modified by variations in the average crystallite size and magnetic exchange interactions, which may be suitable for different technological applications.  相似文献   

2.
《Ceramics International》2017,43(10):7682-7689
Herein, we report a sustainable production of magnetic cobalt ferrite nanoparticles by conventional (CHM) and microwave heating (MHM) method. Hibiscus rosa-sinensis extract was used as both reducing and stabilizing agent. Using plant extracts to synthesize nanoparticles has been considered as an eco-friendly method, since it avoids noxious chemicals. The plethora of plant extract mediated nanoparticles were compared by techniques, such as XRD, Rietveld, FT-IR, SEM, EDX, UV-Visible DRS, PL and VSM were carried out to analyze and understand their crystallite size, functional groups, morphology, optical and magnetic properties. The crystalline structure of cobalt ferrite nanoparticles revealed the cubic structure and the microwave heating of nanoparticles showed smaller crystallite size compared to the conventional heating, which was then confirmed by XRD analysis. To analyze the presence of functional groups and the phytochemical involvement of the plant extract was confirmed by FT-IR studies. Spherical morphology with less than 100 nm sized particles was confirmed by SEM and EDX analysis confirm the existence of Co, O, and Fe elements present in the samples. UV-Visible DRS studies were carried out to calculate the band gap of the as-synthesized nanoparticles, estimated from the Kubelka-Munk function, as 2.06, and 1.87 eV for CHM and MHM, respectively. Photoluminescence emission spectrum of the nanoparticles showed two different bands at 494 and 620 nm, which explores the optical properties of the nanoparticles, due to the quantum confinement effect. VSM analysis showed better ferromagnetic behavior, which can be used for magnetic applications.  相似文献   

3.
《Ceramics International》2023,49(1):944-955
Ca1-3x-yMny[]xNd2x(MoO4)1-3x(WO4)3x molybdato-tungstates (? denotes vacant sites) were successfully synthesized by high-temperature solid-state reaction. New materials crystallize in scheelite-type structure within whole homogeneity range of solid solution (x ≤ 0.2000 and y = 0.0200). Morphological features and particle size distribution were investigated by SEM and laser diffraction methods, respectively. Spectroscopic measurements in the UV–vis range was carried out to determine optical direct band gap (Eg), Urbach energy (EU) and confirmation of structural disorder. Refractive index (n) was calculated using four different models. Magnetic studies revealed paramagnetic behavior with long-range ferrimagnetic and short-range antiferromagnetic interactions. New materials showed weak n-type electrical conductivity and thermoelectric power factor (S2σ) that strongly depends on Nd3+ ions content. Dielectric parameters, i.e. relative permittivity r) and energy loss (tanδ) are insignificantly dependent on Nd3+ ions concentration. These effects were considered in terms of structural defects, thermal activation of charge carriers, and the Maxwell–Wagner polarization.  相似文献   

4.
Structural, optical and dielectric properties of Ni doped ZnO samples prepared by the solid state route are presented. X-ray diffraction confirmed the substitution of Ni on Zn sites without changing the hexagonal structure of ZnO. NiO phase appeared for 6% Ni doping. Fourier transform infrared measurements were carried out to study phonon modes in Ni doped ZnO. Significant blueshift with Ni doping was observed in UV–visible studies, strongly supported by photoluminescence spectra that show a high intensity UV emission peak followed by the low intensity green emission band corresponding to oxygen vacancies and defects. The photoluminescence analysis suggest that doping of Ni can affect defects and oxygen vacancies in ZnO and give the possibility of band gap tuning for applications in optoelectronic devices. High values of dielectric constant at low frequency and a strong dielectric anomaly around 320 °C were observed.  相似文献   

5.
In this paper, W-type Sr1-xPbxCo2Fe16O27 nanostructures were synthesized by auto-combustion sol-gel method. Then, the effects of annealing temperature and Pb contents on the structural, magnetic, optical, and dielectric properties of Sr1-xPbxCo2Fe16O27 nanostructure were investigated. First, a gel of metal nitrates with a specific molar ratio with x different was prepared and then the gel was annealed at different temperatures for 4?h. To determine the annealing temperature of the samples, the prepared gel was examined by thermogravimetric analysis and differential thermal analysis. The morphology and crystal structure of the prepared samples were characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction pattern (XRD). The results of XRD patterns indicated that the annealing temperature of synthesized Sr1-xPbxCo2Fe16O27 was reduced by increasing Pb contents. In addition, FESEM images showed that the microstructure of the samples was homogeneous and uniform, but since the samples have a magnetic property, the particles were aggregated. Fourier transform infrared analysis (FT-IR) was used to confirm the phase formation. The FT-IR results of the samples indicated that the tetrahedral and octahedral sites, which are the important attributes of hexaferrites, were formed. The magnetic properties of the samples were measured by vibrating sample magnetometer (VSM). The VSM results of the samples showed that because of increasing Pb content, the amount of saturation magnetization and that of magnetic coercivity decreased from 81.29 to 10.23?emu/g and 2285–477?Oe, respectively. The optical properties of the samples were investigated by ultraviolet–visible spectroscopy, which revealed that the energy gap decreases and the absorption peaks move towards longer wavelengths by increasing Pb content. The dielectric properties of the samples were investigated by the LCR meter. It was found that by increasing frequency, the dielectric constant (ε) and the dielectric loss (?) of the samples were decreased.  相似文献   

6.
《Ceramics International》2020,46(8):11515-11529
The Ni0.2Mg0.8-xZnxFe2O4 (x = 0.0, 0.2, 0.4, 0.6 & 0.8) nanomaterials were prepared via sol-gel technique. These samples were calcined at three different temperatures (T) such as 400, 450 and 500 °C/5 h. Furthermore, the X-ray diffraction (XRD) patterns of all the calcined samples revealed the single phase cubic spinel structure. The lattice constants (a = b = c) were noticed to be increasing with increase of ‘x’. The grain shape, size and distribution of x = 0.0–0.8 contents were analyzed using field emission electron microscope (FESEM). The x = 0.2 content provided higher optical band gap energy (Eg) value than the remaining contents. Furthermore, the magnetization versus magnetic field (M − H) curves indicated the superparamagnetic nature of x = 0.0–0.8 contents. The high saturation magnetization (Ms) was noticed for x = 0.4 and 0.6 contents. In addition, the distribution of cations like Ni+2, Mg+2, Zn+2, Fe+3 and Fe+2 was performed between the tetrahedral (A) and octahedral (B) sites. The frequency dependence of dielectric constant (ε′), dielectric loss (ε") and ac-electrical conductivity (σac) was investigated as a function of composition. Moreover, the temperature variation of ε′ showed the decreasing trend of dielectric transition temperature (Te) with increase of ‘x’. The high ε′ of 163.1 (at 1 MHz) was noticed at x = 0.2 content calcined at 500 °C. Using the power law fit applied to the log σac-log ω plots, the dc-electrical conductivity (σdc) and exponent (n) parameters were calculated.  相似文献   

7.
《Ceramics International》2020,46(15):24071-24082
Pristine chromium oxide (Cr2O3) and nickel ions (Ni2+) substituted Cr2O3 nanoparticles were synthesized using a simple co-precipitation technique. The main objective of this work is to investigate Ni2+ substituent's role at different concentrations on the structural, morphological, optical, and magnetic properties of Cr2O3 nanoparticles. Structural analyses based on X-ray diffraction (XRD), Raman and Fourier transform infra-red (FTIR) data confirmed the successful incorporation of Ni2+ into Cr2O3 nanoparticles up to x = 0.05 of Ni2+ content, without affecting the rhombohedral crystal structure of Cr2O3 nanoparticles. Rietveld refinement results showed the variation in lattice parameters and cell volumes alongwith the substitution of Ni2+ into Cr2O3 nanoparticles. Raman and FTIR spectra also depicted a considerable shift in the characteristic vibration modes of Cr2O3 nanoparticles due to strain-induced by Ni2+ substitution. Beyond x = 0.05, the structural transformation took place from rhombohedral to cubic crystal structure. Subsequently, new peaks (apart from Cr2O3 phase modes) have been observed at x = 0.1 of Ni2+ content due to the formation of secondary phase i.e., nickel chromate (NiCr2O4). Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) illustrated the changes in the morphology of Cr2O3 nanoparticles with Ni2+ substitution. UV–Vis analysis revealed a narrowing of optical band energy (Eg) of Ni2+ substituted Cr2O3 nanoparticles from 3 to 1.85 eV as Ni2+ content varies from x = 0 to 0.2, respectively. Afterward, there is an increase in optical band gap energy (Eg) when Ni2+ content increased from x = 0.3 to 0.5, as NiCr2O4 started dominating the Cr2O3 phase. Single-phase Ni2+ substituted Cr2O3 nanoparticles exhibited a superparamagnetic behavior, whereas the multi-phase compound ascribed to both superparamagnetic and paramagnetic. These changes in optical and magnetic properties can lead to novel strategies to render applications in the field of optoelectronics and optomagnetic devices.  相似文献   

8.
9.
《Ceramics International》2016,42(12):13773-13782
Nickel and cobalt substituted manganese ferrite nanoparticles (NPs) with the chemical composition NixCoxMn1–2xFe2O4 (0.0≤x≤0.5) NPs were synthesized by one-pot microwave combustion route. The effect of co-substitution (Ni, Co) on structural, morphological and magnetic properties of MnFe2O4 NPs was investigated using XRD, FT-IR, SEM, VSM and Mössbauer spectroscopic techniques. The cation distribution of all products were also calculated. Both XRD and FT-IR analyses confirmed the synthesis of single phase spinel cubic product for all the substitutions. Lattice constant decreases with the increase in concentration of both Co and Ni in the products. From 57Fe Mössbauer spectroscopy data, the variations in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values with Mn2+, Ni2+ and Co2+ substitution have been determined. While the Mössbauer spectra collected at room temperature for the all samples are composed of magnetic sextets, the superparamagnetic doublet is also formed for MnFe2O4 and Ni0.2Co0.2Mn0.6Fe2O4 NPs. The magnetization and Mössbauer measurements verify that MnFe2O4 and Ni0.2Co0.2Mn0.6Fe2O4 NPs have superparamagnetic character. The saturation and remanence magnetizations, magnetic moment and coercive field were determined for all the samples. Room temperature VSM measurements reveals saturation magnetization value close to the bulk one. It has been observed that the saturation magnetization and coercive field increase with respect to the Ni and Co concentrations.  相似文献   

10.
《Ceramics International》2016,42(13):14805-14812
In this communication, we present the results on Bi1−xLaxFe1−yNiyO3 (x=0.0, 0.1; y=0.0, 0.05) samples processed by solid-state reaction route in order to study crystalline and electronic structure, dielectric and ferroelectric properties. The best refinement was achieved by choosing rhombohedral structure (R3c) for BiFeO3 and Bi0.9La0.1FeO3 samples. Whereas, the XRD pattern of BiFe0.95Ni0.05O3 and Bi0.9La0.1Fe0.95Ni0.05O3 samples were refined by choosing rhombohedral (R3c) and cubic (I23) structure. Raman scattering measurement infers nine Raman active phonon modes for all the as prepared samples. The substitution of Ni ion at Fe-site in BiFeO3 essentially changes the modes position i.e. all the modes are observed to shift to lower wave number. Dielectric constant (ε′) and dielectric loss (tan δ) as a function of frequency have been investigated and they decreases with increasing frequency of the applied alternating field and become constant at high frequencies. This feature is a characteristic of Maxwell Wagner type of interfacial polarization. The remnant polarization (Pr) for Bi0.9La0.1FeO3, BiFe0.95Ni0.05O3, and Bi0.9La0.1Fe0.95Ni0.05O3 are 0.08, 0.11, 0.69 μC/cm2, respectively and the value of coercive field for Bi0.9La0.1FeO3, BiFe0.95Ni0.05O3, and Bi0.9La0.1Fe0.95Ni0.05O3 are 0.53, 0.67, 0.68 kV/cm, respectively. X-ray absorption spectroscopy (XAS) experiments at Fe L2,3 and O K-edges are performed to investigate the electronic structure of well-characterized Bi1−xLaxFe1−yNiyO3 (x=0.0, 0.1; y=0.0, 0.05) samples. The presence of reasonable ferroelectric polarization at room temperature in Bi0.9La0.1Fe0.95Ni0.05O3 ceramics makes it suitable for technological applications.  相似文献   

11.
NiNdxFe2-xO4 nanoferrites with different compositions of x?=?0.01, 0.03, 0.05, 0.07 and 0.09 were prepared using the sonochemical method. The structural, optical and morphological properties of the prepared nanoferrites were characterized by X-ray diffraction, ultra violet-diffuse reflectance spectroscopy, scanning electron microscopy and X-ray fluorescence techniques. The X-ray diffraction analysis of the prepared nanoferrites confirmed the presence of a cubic spinel structure. The average crystallite sizes of the prepared nanoferrites were 52, 49, 46, 44 and 40?nm for x?=?0.01, 0.03, 0.05, 0.07 and 0.09, respectively. The particle size of the prepared NiNdxFe2-xO4 nanoferrites was in the range 60–40?nm. The dielectric parameters ranged from 2.9?GHz to 5.6?GHz. Decrease in the dielectric constant was observed with an increase in Nd3+ ions in the prepared NiNdxFe2-xO4 nanoferrites. However, a reverse trend was observed in the dielectric loss. An impedance analysis of the prepared nanoferrites was carried out to explore the pseudo-capacitance behavior. The saturation magnetization and remnant magnetization values of the prepared nanoferrites decreased with an increase in the concentration of Nd3+ ions in NiNdxFe2-xO4 nanoferrites.  相似文献   

12.
《Ceramics International》2020,46(5):5920-5928
This work aims to study the effect of polymer on the structure, magnetic and dielectric properties of spinel ferrite composite. Nanocomposites based on polystyrene (PST)/ZnFe2O4 were synthesized by using the micro-emulsion method. The novel composites with PST to ZnFe2O4 ratios (4:0, 4:1, 4:2, 4:3, 4:4, 0:4) were analyzed by X-ray diffractometer (XRD) which confirms the spinel structure of ZnFe2O4 with an average crystallite size of 15.3 nm for pure ZnFe2O4 and decreases by increasing the polystyrene concentration. Field Emission Scanning Electron Microscopy (FESEM) gave the optimized results of surface morphology and the crystallite size which are in accordance with XRD data. Fourier Transform Infrared (FTIR) spectra show two main broad metal–oxygen bands corresponding to the intrinsic stretching vibrations of the metal at the tetrahedral site (observed between 837.9 and 1034.3 cm−1) and traces of organic materials were observed at 1499.2 and 1766.4 cm−1, which are associated with CO and CC stretching vibration respectively. O–H stretch of COOH weak acid of the carboxyl group was found at 2978.7 cm-1. The composite with equal ZnFe2O4 to PST ratio (4:4) shows that real part of dielectric constant is independent of frequency at lower frequencies of an applied electric field. The resonance type behaviour was observed at higher frequency (2.5 GHz) which shows the material is excellent for dispersion of electric part of microwaves. The magnetization for pure ferrite (ZnFe2O4) at 15000 Oe was found to be 1.49 emu/g which decreases to 0.54 emu/g for the composite with the equal ferrite to polystyrene ratio. Based on their dielectric and magnetic characterization, these composites are considered suitable candidates to employ as microwave absorbing materials.  相似文献   

13.
《Ceramics International》2020,46(8):11705-11716
In the present work, the influence of cationic surfactant CTAB (cetyltrimethylammonium bromide) on size, shape and coalescence behaviour of cobalt ferrite nanoparticles (CFNPs) synthesized via hydrothermal method is reported. Pure CFNPs show no additional peaks, whereas α-Fe2O3 phase is observed in CTAB added CFNPs upon annealing. FT-IR analysis confirms the formation of M − O vibrational bands (metal -oxygen) at tetrahedral A-site and octahedral B-site for both samples. SEM observations reveal less agglomeration and smaller particle size for surfactant added CFNPs. Raman spectral study confirms the formation of cubic spinel structure and Raman active modes of CTAB added CFNPs. UV–Vis spectra indicate a decrease in the energy band gap with annealing. The dielectric constant of surfactant added CFNPs decreases with increasing applied frequencies for both real and imaginary, but ac conductivity increases with increasing frequencies. Two sextet patterns of Fe3+ trivalent ions from tetrahedral and octahedral sites are observed in Mössbauer spectra. VSM study indicate the ferrimagnetic nature of CTAB added CFNPs. The electrochemical analysis reveals the pseudocapacitive nature of working electrode prepared by CTAB added CFNPs.  相似文献   

14.
The influence of adding 10, 20 and 30% molar ratio of silicon carbide (SiC) separately to a composite of wollastonite (W) with a fixed content of 10%Fe2O3 prepared by wet precipitation method was studied. The crystal structure of the annealed composite powders was inspected by X-ray diffraction (XRD); revealing multi-phase structure. The highest estimated crystallite size investigated by Scherrer equation of W, SiC, WFe:SiC10, WFe:SiC20 and WFe:SiC30 were 53.89, 54.6, 56.3, 48.5 and 54.6 nm respectively; demonstrating the formation of nanocomposites. Particles shape, size and crystallinity of the samples were studied using high resolution transmission electron microscope (HR-TEM). The band gap Eg values of the nanocomposites increased with SiC content having an intermediate value that lies between that of γ-Fe2O3 (maghemite) and SiC. Ferromagnetic and paramagnetic contributions were observed in the magnetic hysteresis loops for the composites. This study highlighted that the coercive field (Hci) of the composites improved with increasing the SiC content. The innovative wollastonite/Fe2O3/SiC with amended magnetic properties elicited attention due to their promising application in bone filler and industrial purposes.  相似文献   

15.
《Ceramics International》2022,48(18):26585-26607
In this study, the changes caused by Ni and Sr additives on the structural, thermal, dielectric, and magnetic properties of hydroxyapatite (HAp) samples were examined and reported for the first time in detail.Some effects of the Sr/Ni site disorder on the crystallographic, dielectric, and magnetic properties in Sr/Ni-HAp have been examined, as well as their cytotoxicity effects. The addition of Ni affected the morphology of nanoparticles with a low agglomeration increase. Our results showed that the dielectric constant (ε′) and dielectric loss (ε′′) have greater values at low frequencies than at higher frequencies for all the samples.It can be concluded that Ni and Sr additions to the HAp structure contribute to the development of thermal, magnetic, and dielectric properties required to mimic natural HAp in the study conducted with the idea of creating a medical application area for bone healing and regeneration. The cytotoxicity test of the produced nanoparticles and the evaluation of the results were also performed using human foreskin fibroblasts (HFF). The viability of cells after treatment for 48 h ranged between 50 and 75%. While 0.37Ni-0.37Sr-HAp and 1.11Ni-0.37Sr-HAp were similar to 0.37Sr-HAp, 0.74Ni-0.37Sr-HAp had the highest cellular viability. At 0.1 mg/mL, 0.74Ni-0.37Sr-HAp had a viability of 79.97% compared to the untreated control cells. Our Sr/Ni-HAp nanoparticles have promising medical applications in bone healing and regeneration.  相似文献   

16.
《Ceramics International》2022,48(22):33208-33218
Owing to its unique magnetic, dielectric, electrical and catalytic properties, ferrite nanostructure materials gain vital importance in high frequency, memory, imaging, sensor, energy and biomedical applications. Doping is one of the strategies to manipulate the spinel ferrite structure, which could alter the physico-chemical properties. In the present work, Co1-xZnxFe2O4 (x = 0, 0.1, 0.2, 0.3, and 0.4 wt%) nanoparticles were prepared by sol-gel auto-combustion method and its structural, morphological, vibrational, optical, electrical and magnetic properties were studied. The structural analysis affirms the single-phase cubic spinel structure of CoFe2O4. The crystallite size, lattice constant, unit cell, X-ray density, dislocation density and hopping length were significantly varied with Zn doping. The Fe–O stretching vibration was estimated by FTIR and Raman spectra. TEM micrographs show the agglomerated particles and it size varies between 10 and 56 nm. The Hall effect measurement shows the switching of charge carriers from n to p type. The dielectric constant (ε′) varies from 0.2 × 103 to 1.2 × 103 for different Zn doping. The VSM analysis shows relatively high saturation magnetization of 57 and 69 emu/g for ZC 0.1 and ZC 0.2 samples, respectively than that of undoped sample. All the prepared samples exhibit soft magnetic behaviour. Hence, it can be realized that the lower concentration of Zn ion doping significantly alters the magnetic properties of CoFe2O4 through variation in the cationic distribution and exchange interaction between the Co and Fe sites of the inverse spinel structure of CoFe2O4.  相似文献   

17.
《Ceramics International》2016,42(15):17128-17136
Nanoparticles of basic composition Sn0.94Zn0.05Co0.01O2, Sn0.92Zn0.05Co0.03O2 and Sn0.90Zn0.05Co0.05O2 were synthesized by chemical precipitation method. The incorporation of Co and Zn in SnO2 lattice introduced significant changes in the physical properties of all the three nanocrystals. The average particle size estimated from TEM data decreased from 15.71 to 6.41  nm with enhancement in concentration of oxygen vacancies as Co content is increased from 1 to 5 wt%. Increasing Co content enhanced the Sn:O atomic ratio as a result concentration of oxygen vacancies increased. The dielectric study revealed strong doping dependence. The dielectric parameters (ε′, tanδ and σac) increased with increasing Co content and attained maximum values for 5% (Zn, Co) co-doped SnO2 nanoparticles. The dielectric loss (ε′′) exhibited dispersion behavior and the Debye’s relaxation peaks observed in dielectric loss factor (tanδ), whose intensities increased with increasing Co content. The variation of dielectric properties and ac conductivity revealed that the dispersion is due to Maxwell-Wagner interfacial polarization and hopping of charge carriers between Sn+2/Sn+3 and Co+2/Co+3. The large dielectric constant of all samples made them interesting materials for device application. Magnetization measurements (M (H) loops) revealed enhancement in saturation magnetization with doping which is due to the formation of large amount of induced defects and oxygen vacancies in the samples. The present study clearly reveals doping dependent properties and the oxygen vacancies induced ferromagnetism in Zn, Co co-doped SnO2 nanoparticles having applications in ultra-high dielectric materials, high frequency devices and spintronics.  相似文献   

18.
Bi1−xBaxFeO3 (x=0.05, 0.10 and 0.15) nanoparticles were synthesized by the sol–gel method. X-ray diffraction and Raman spectroscopy results showed the presence of distorted rhombohedral structure of Bi1−xBaxFeO3 nanoparticles. Rietveld refinement and Williamson–Hall plot of the x-ray diffraction patterns showed the increase in lattice parameters, unit cell volume and the particle size. Infrared spectroscopy and Raman analysis revealed the shifting of phonon modes towards the higher wavenumber side with increasing Ba concentration. These samples exhibited the optical band gap in the visible region (2.47–2.02 eV) indicating their ability to absorb visible light. Magnetic measurement showed room temperature ferromagnetic behavior, which may be attributed to the antiferromagnetic core and the ferromagnetic surface of the nanoparticles, together with the structural distortion caused by Ba substitution. The magnetoelectric coupling was evidenced by the observation of the dielectric anomaly in the dielectric constant and the dielectric loss near antiferromagnetic Neel temperature in all the samples.  相似文献   

19.
Dysprosium (Dy) doped Y-type strontium hexa ferrites of the following composition Ni2Sr2DyxFe12-xO22 where (x?=?0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared through co-precipitation process. Phase analysis of the investigated samples was carried out by characterizing through (XRD) X-ray diffraction which confirmed the pure phase of Y-type hexaferrites. Dysprosium ion doping influenced lattice parameters i.e. lattice constants (a, c), crystallite size, (c/a) ratio, cell volume and porosity. The calculated crystallite size was in the range of 88–159?nm. FTIR plots showed that the characteristics bonds of Ni2Sr2DyxFe12-xO22 are appreciably influenced by the incorporation of Dy contents. The results of dielectric parameters revealed that dielectric constant, dielectric loss, tanloss were decreased with an increase in frequency. At 6.0?×?108 Hz, dielectric constant decreased from 5.55 to 3.69 with increasing Dy concentration. Owing to Maxwell-wagner type relaxation, the decrease in dielectric constant was noticed at higher frequency. The smaller dielectric constants and dielectric losses make these materials suitable for their applications in microwave devices fabrication.  相似文献   

20.
《Ceramics International》2017,43(5):4489-4495
BiFeO3, BiFe0.95Nb0.05O3 and Bi1−xNdxFe0.95Nb0.05O3 (x=0.0, 0.05, 0.10, 0.15 and 0.20) nanoparticles are successfully synthesized via a tartaric acid-assisted sol-gel technique for the first time. The effect of Nd and Nb co-doping on the structure, morphology, and magnetic and optical properties is investigated. X-ray diffraction (XRD) and Raman measurements demonstrate that Nd3+ ions and Nb5+ ions co-doping at A and B-sites of BiFeO3 can result in a structural transformation (from single rhombohedral phase (R3c) to two coexisting phases (R3c and Pbam)). The morphology of the nanoparticles seems to be approximately cubic, and by the co-doping, the size of the nanoparticles decreases from ~132 to ~35 nm. Notable improvement in the remanent magnetization of the sample with x=0.15 is observed with a value of 0.285 emu/g, being 20 times higher than that of the undoped sample (BiFeO3). A decrease in the optical band gap is also observed in the Nd and Nb co-doped nanoparticles, indicating their favorable potential in photocatalytic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号