首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Described herein is the production of a half cell with a strontium-substituted lanthanum manganite/cerium gadolinium oxide support and dense cerium gadolinium oxide electrolyte for electrochemical flue gas purification. The half cells were constructed through tape casting a strontium-substituted lanthanum manganite/cerium gadolinium oxide support and cerium gadolinium oxide electrolyte. The half cells were produced by laminating the support and electrolyte layers followed by sintering. Perfectly flat half cells were constructed with a porous strontium-substituted lanthanum manganite/cerium gadolinium oxide support layer and dense cerium gadolinium oxide electrolyte by adjusting sintering shrinkage at the electrolyte layer and altering the sintering aid.  相似文献   

2.
In this paper we present results for a high power density IT‐SOFC and a method for dispersing nanosized Ce0.9Gd0.1O1.95 (GDC) particles at the GDC electrolyte and Ni‐GDC anode interface. Dispersed nanosized particles were deposited to form an anode functional layer (AFL). Anode supports were prepared by tape casting of large micron‐sized NiO powder and sub micron‐sized GDC powder without pore former. For the cathode a La0.6Sr0.4Co0.2Fe0.8O3 – δ (LSCF)‐GDC composite was used. Without an AFL the open circuit potential (OCP) and the maximum power density were 0.677 V and 407 mW cm–2, respectively, at 650 °C using 30 sccm of hydrogen and air flow‐rate. With an AFL the OCP and the maximum power density increased to 0.796 V and 994 mW cm–2, respectively, at the same temperature. Two point probe impedance measurements revealed that the AFL fabricated by the proposed method not only increased the OCP but also reduced the electrode polarisation by 68%. The effect of gas flow‐rate is also present in this paper. When hydrogen and air flow‐rate is increased to 90 sccm, the sample with AFL obtained 1.57 W cm–2 at 650 °C.  相似文献   

3.
Various organic constituents were used to improve the mechanical properties of green sheets prepared by a novel aqueous gel tape casting. Two deadly problems of green sheets: brittle and surface exfoliation were settled and mechanical properties were estimated. Compared with poly(ethylene glycol) (PEG400 (Mw ≈ 400)), poly(propylene glycol) (PPG400 (Mw ≈ 400)) and di-ethylic phthalate (DEP), glycerol was the most efficient plasticizer to improve the flexibility of the green sheet. The addition of PEG2000 eliminated the surface-exfoliation phenomenon of green sheets in air and had no distinct deterioration in mechanical properties. The flexible and lubricous green sheets were obtained. The solid loading of the suspension reached 73.5 wt.% and the relative green density was 58%.  相似文献   

4.
The sintering behavior of Ce0.9Gd0.1O1.95 (CGO) tape cast layers with different porosity was investigated by an extensive characterization of densification, microstructural evolution, and applying the constitutive laws of sintering. The densification of CGO tapes associates with grain coarsening process at the initial sintering stage at T < 1150 °C, which is mainly influenced by small pores and intrinsic characteristics of the starting powders. At the intermediate sintering stage, densification is remarkably influenced by large porosity. Moreover, the sintering constitutive laws indicate that increasing the initial porosity from 0.38 to 0.60, the densification at the late stage is thermally activated with typical activation energy values increasing from 367 to 578 kJ mol−1. Similar effect of the porosity is observed for the thermally activated phenomena leading to grain growth in the CGO tapes. The analysis of sintering mechanisms reveals that the grain growth behavior at different porosity can be described using an identical master curve.  相似文献   

5.
Piezoelectric Bi0.5(Na0.82K0.18)0.5TiO3 thick films were prepared by aqueous gel-tape casting. Bi0.5(Na0.82K0.18)0.5TiO3 nano-powder with perovskite structure prepared by sol–gel process was obtained. The average particle size was 200 nm. A stable Bi0.5(Na0.82K0.18)0.5TiO3 suspension with 46 vol% solid loading and <1 Pa s viscosity was prepared when 0.8 wt% of ammonium polyacrylate was added with the pH value controlled in the range 7–9. The plasticizer glycerol had a positive effect on the fluidity of the suspensions. The tensile strength and strain to failure of the green tape were 0.42 MPa and 0.04 mm/mm when the addition of glycerol was 50 wt% of the premix solvent. The resulting about 100 μm thick films had relative permittivity of 910, dielectric loss of 4.9% at 10 kHz, remanent polarization of 24 μC/cm2, coercive field of 56 kV/cm, and longitudinal effective piezoelectric coefficient d33eff of 102 pC/N. The good performance illustrated that gel-tape casting was the effective way to prepare Bi0.5(Na0.82K0.18)0.5TiO3 thick film.  相似文献   

6.
《Ceramics International》2016,42(16):18700-18710
A series of Al2O3/Y2O3-stabilized zirconia (Y-TZP) ceramic composites with different zirconia contents (5 and 40 vol% Y-TZP) and fabricated by different green processing techniques (a novel tape casting and conventional slip casting) were studied. The microstructure and mechanical properties of the composites were investigated systematically, by means of scanning electron microscopy, Vickers indentation, depth-sensing nanoindentation, and single-edge laser-notched beam (SELNB) techniques. The indentation fracture method was found to be unsuitable for fracture toughness determination in this work. Reliable values of fracture toughness were obtained by the SELNB method with an almost atomically sharp laser-machined initial notch. The microstructure and mechanical properties of the ceramic composites mainly depended on the Y-TZP content. No significant differences were induced by the choice of green processing technique. The contribution of residual stresses to fracture toughness in Al2O3/Y-TZP ceramic composites was investigated. To this end, a theoretical model was applied to estimate the increase in fracture toughness due to the measured residual stresses in the samples. It was found that in this case, residual stresses were not the main factor responsible for the toughening in Al2O3/Y-TZP composites.  相似文献   

7.
In this study, Mo0.9Cr0.1AlB solid solution ceramic bulks were prepared from the element powder mixtures using hot pressing sintering method. Compared with MoAlB ceramics, the grains of as-prepared Mo0.9Cr0.1AlB were refined obviously. The lattice constants of Mo0.9Cr0.1AlB were confirmed to be a = 3.205 Å, b = 13.999 Å and c = 3.098 Å. The density of Mo0.9Cr0.1AlB was lower than that of MoAlB due to the incorporation of Cr element. In addition, the effect of doping Cr element on the comprehensive mechanical properties was studied as well. The hardness and compressive strength were improved significantly. In comparison with MoAlB ceramic, the improvement of mechanical properties could be attributed to solid solution strengthening and grain refinement.  相似文献   

8.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications.  相似文献   

9.
《Ceramics International》2017,43(2):1895-1903
This paper examined theoretically and experimentally packing behavior, sintering behavior and compressive mechanical properties of sintered bodies of the bimodal particle size system of 80 vol% large particles (351 nm diameter)–20 vol% small particles (156 nm diameter). The increased packing density as compared with the mono size system was explained by the packing of small particles in 6-coordinated pore spaces among large particles owing to the similar size relation between 6-coordinated spherical pore and small particle. The sintering between adjacent large particles dominated the whole shrinkage of the powder compact of the bimodal particle size system. However, the bimodal particle size system has a high grain growth rate because of the different curvatures of adjacent small and large particles. The derived theoretical equations for the compressive strengths of both mono size system and bimodal particle size system suggest that the increase in the grain boundary area and relative density by sintering dominate the compressive strength of a sintered porous alumina. The experimental compressive strengths were well explained by the proposed theoretical models. The strength of the bimodal particle size system was high at low sintering temperatures but was low at high sintering temperatures as compared with that of mono size system of large particles. This was explained by mainly the change of grain boundary area with grain growth. The stress–strain relationship of the bimodal particle size system showed an unique pseudo-ductile property. This was well explained by the curved inside stress distribution along the sample height. The inside stress decreases toward the bottom layer. The fracture of one layer of sintered grains over the top surface proceeds continuously with compressive time along the sample height when an applied stress reaches the critical fracture strength.  相似文献   

10.
Effect of Mo addition on the microstructure and mechanical properties of TiC–TiN(nm)–WC–Co–Ni–C system cermets was studied in the work. Specimens were fabricated by conventional powder metallurgy techniques. The microstructure was investigated using transmission electron microscope (TEM) and the scanning electron microscope (SEM). Chemical compositions of different phases such as ceramic phase with core/rim structure [the core being TiC and rim being (Ti,W,Mo)(C,N)] and metallic phase were analyzed quantitatively by EDX. Mechanical properties such as flexural strength, fracture toughness and hardness were also measured. Results show that flexural strength and fracture toughness have a trend to decline with increasing Mo addition, but the change of hardness is not apparent with the increase of Mo addition. Results also reveal that finer microstructure and thicker rim phase will be obtained with the increase of Mo addition. The optimal addition of Mo can be estimated to be 4 wt.% with respect to TiC–10TiN(nm)–15WC–5Co–Mo–5Ni–1C system cermets. Fracture micrographs show that main failure mode of the cermets is a mixed one, i.e., trans-granular and inter-granular fractures both exist.  相似文献   

11.
Thermal and mechanical properties of polycrystalline La1−xAxNbO4 (x = 0, 0.005, 0.02 and A = Ca, Sr and Ba) are reported. The materials possess a ferroelastic to paraelastic phase transition close to 500 °C, and the linear thermal expansion is significantly lower (8.6 ± 0.5 × 10−6 °C−1) for the paraelastic phase compared to the ferroelastic phase (15 ± 3 × 10−6 °C−1). The hardness was significantly higher for acceptor doped materials (6 GPa) compared to pure LaNbO4 (3 GPa) due to a significantly smaller average grain size. The fracture toughness of La0.98Sr0.02NbO4, measured by single edge V-notched beam method, was 1.7 ± 0.2 MPa m1/2 independent of temperature up to 600 °C. The ferroelastic properties of the materials were confirmed by non-linear relationships between stress and strain during compression/decompression, a remnant strain after decompression and the presence of ferroelastic domains. The mechanical properties of LaNbO4-based materials are discussed with focus on ferroelasticity, microcracking due to crystallographic anisotropy and pinning of ferroelastic domain boundaries.  相似文献   

12.
K Mylvaganam  L.C Zhang 《Carbon》2004,42(10):2025-2032
This paper discusses several important issues in a molecular dynamics simulation for analysing carbon nanotubes and their mechanical properties. In particular, the paper addresses the problems in selecting appropriate inter-atomic potentials, number of thermostat atoms, thermostat techniques, time and displacement steps and number of relaxation steps to reach the dynamic equilibrium. Based on these, the structural changes of armchair and zigzag nanotubes and their mechanical properties are investigated. The Young's modulus and Poisson's ratio of the armchair tube are 3.96 and 0.15 TPa, respectively, and those of the zigzag tube are 4.88 and 0.19 TPa, respectively. The best simulation technique identified in this study predicts that the ultimate tensile strain of a carbon nanotube is around 40% before atomic bond breakage.  相似文献   

13.
《Ceramics International》2017,43(12):8743-8754
The strength integrity and chemical stability of porous alumina ceramics operating under extreme service conditions are of major importance in understanding their service behavior if they are to stand the test of time. In the present study, the effect of porosity and different pore former type on the mechanical strength and corrosion resistance properties of porous alumina ceramics have been studied. Given the potential of agricultural wastes as pore-forming agents (PFAs), a series of porous alumina ceramics (Al2O3-xPFA; x=5, 10, 15 and 20 wt%) were successfully prepared from rice husk (RH) and sugarcane bagasse (SCB) through the powder metallurgy technique. Experimental results showed that the porosity (44–67%) and the pore size (70–178 µm) of porous alumina samples maintained a linear relationship with the PFA loading. Comprehensive mechanical strength characterization of the porous alumina samples was conducted not just as a function of porosity but also as a function of the different PFA type used. Overall, the mechanical properties showed an inverse relationship with the porosity as the developed porous alumina samples exhibited tensile and compressive strengths of 20.4–1.5 MPa and 179.5–10.9 MPa respectively. Moreover, higher strengths were observed in the SCB shaped samples up to the 15 wt% PFA mark, while beyond this point, the silica peak observed in the XRD pattern of the RH shaped samples favored their relatively high strength. The corrosion resistance characterization of the porous alumina samples in hot 10 wt% NaOH and 20 wt% H2SO4 solutions was also investigated by considering sample formulations with 5–15 wt% PFA addition. With increasing porosity, the mass loss range in RH and SCB shaped samples after corrosion in NaOH solution for 8 h were 1.25–3.6% and 0.44–2.9% respectively; on the other hand, after corrosion in H2SO4 solution for 8 h, the mass loss range in RH and SCB shaped samples were 0.62–1.5% and 0.68–3.3% respectively.  相似文献   

14.
Ferroelectric PZT/xWO3 ceramics (when x = 0, 0.5, 1, 3 and 5 vol%) were fabricated from PZT and nano-sized WO3 powders by a solid-state mixed-oxide method. Phase characterization suggested that the reaction between PZT and WO3 occurred during the sintering. This reaction seemed more pronounced with increasing the content of WO3. The maximum density at approximately 97% of the theoretical value was achieved at 1 vol% of WO3 addition. The grain size was reduced with an addition of WO3 particles from 7.8 μm for PZT to 1.8 μm for 0.5 vol% WO3 and 0.8 μm for 1–5 vol% WO3. Mechanical properties of PZT could be improved with an addition of WO3 nano-particulates. The addition of 0.5 vol% WO3 could maintain good electrical properties while increasing WO3 significantly reduced dielectric and piezoelectric constants of the PZT.  相似文献   

15.
To investigate the relationship between micro-defects in ceramic materials and macro mechanical properties and behaviours, a computational model of SiC ceramics with randomly oriented elliptical pores was established using the discrete element method (DEM). The effects of pore defect content and its aspect ratio on the failure mode, stress-strain curve and mechanical properties of specimen were investigated under uniaxial compression. The effective Young's modulus which was obtained from DEM simulations was compared with the predictions of Mori-Tanaka scheme (MTS) and Self-Consistent scheme (SCS) at various pore defect densities. The results showed that the compressive strength and crack initiation stress decrease nonlinearly as the pore defect content increases. Furthermore, the smaller the aspect ratio of the elliptical pore defects was, the more obvious the weakening trend was. As the pore defect content increases, the failure mode of the specimen changed from brittle fracture to tensile-shear mixing and then to axial splitting. The stress-strain curves showed a certain “softening” period during the loading process. The effective Young's modulus obtained from the DEM simulations coincides with the approximations of MTS and SCS at low pore densities. However, when the pore defect density became larger, the DEM simulation results were slightly lower than the theoretical results of the Mori-Tanaka scheme, which only considers the weak interaction between defects.  相似文献   

16.
17.
In the present work, well-shaped HAp green bodies were obtained by the gel-casting process with 50 vol.% slurry. After drying, the microstructure and pore distribution of the green body were investigated. The density, compressive strength and flexural strength of the green body were 1.621 g/cm3, 32.6 ± 3.2 MPa and 13.8 ± 1.0 MPa, respectively. After pressureless sintering at the range of 1100–1300 °C for 2 h, the relative density of the final product ranges from 71.8 to 97.1% th. The maximum value of flexural strength, elastic modulus, hardness and fracture toughness were 84.6 ± 12.6 MPa, 138 ± 7 GPa, 4.45 ± 0.18 GPa and 0.95 ± 0.13 MPa m1/2, respectively. SEM images show a compact and uniform microstructure; the average grain size was found by using the linear intercept method. XRD and FTIR determined the phase and the radical preserved after sintering.  相似文献   

18.
Preparation of aluminum nitride green sheets by aqueous tape casting   总被引:1,自引:0,他引:1  
Aluminum nitride green sheets were prepared by aqueous tape casting. The characteristics of a treated AlN were studied in aqueous ball-milling media. The oxygen content picked up with the increase of ball-milling time. It was noted that the oxygen content of AlN powder with the dispersant DP270 was lower than that of AlN powder without the dispersant DP270. The isoelectric points of the treated AlN with and without DP270 were, respectively, at pH 3.35 and pH 3.90. The dispersant DP270 not only efficiently dispersed AlN powder in water to form a stable suspension, but also formed a coat onto AlN surface to limit hydrolysis of the AlN powder. The tape casting slurry exhibited a typical shear-thinning behavior. Aqueous AlN green tape had a smooth surface and a narrow pore size distribution. Its relative density was 52.6%. No other crystalline phase was detected by XRD except for AlN and sintering aid yttria in AlN green sheet.  相似文献   

19.
The sintering behavior of porous Ce0.9Gd0.1O1.95 (CGO10) tape cast layers was systematically investigated to establish fundamental kinetic parameters associated to densification and grain growth. Densification and grain growth were characterized by a set of different methods to determine the dominant sintering mechanisms and kinetics, both in isothermal and at constant heating rate (iso-rate) conditions. Densification of porous CGO10 tape is thermally activated with typical activation energy which was estimated around 440–470 kJ mol?1. Grain growth showed similar thermal activation energy of ~427 ± 22 kJ mol?1 in the temperature range of 1100–1250 °C. Grain-boundary diffusion was identified to be the dominant mechanism in porous CGO10 tapes. Grain growth and densification mechanism were found strictly related in the investigated temperature range. Porosity acts as a grain growth inhibitor and grain boundary mobility in the porous body was estimated around 10?18–10?16 m3 N?1 s?1 at the investigated temperature range.  相似文献   

20.
Keisha M Steel 《Carbon》2003,41(2):253-266
Carbon molecular sieving membranes are chemically robust materials with tailorable gas transport properties for O2/N2, CO2/CH4 and C3H6/C3H8 separations. Such carbon materials were formed in this study by the pyrolysis of polyimide precursors. The final pyrolysis temperature was varied to alter the carbon structure, which changed the average pore size. Characterization of the porosity of these materials and how this feature changes when pyrolysis conditions are varied could guide the systematic control of these materials. However, the carbon is an amorphous, microporous material, which makes it difficult to characterize compared to crystalline materials. From separation studies of penetrants on these materials it appears that these materials have both ultramicropores (<7 Å) and larger micropores. The ultramicropores are believed to be mainly responsible for molecular sieving while the micropores provide negligible resistance to diffusion but provide high capacity sorption sites for penetrants. Techniques such as wide angle X-ray diffraction and the analysis of carbon dioxide adsorption isotherms using density functional theory were employed to characterize the microporosity of the material. The small dimensions of the key ultramicropores make accurate determination of their pore size distribution difficult. Therefore, to effectively discuss the differences in transport properties when different pyrolysis temperatures are used as well as penetrants with different dimensions, a hypothetical ultramicropore size distribution was used as a tool to discuss and interpret a combination of parameter effects and trends of separation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号