首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
《Chemical engineering science》2001,56(21-22):5871-5891
Some aspects of the fundamental characteristics of evaporative liquid jets in gas–liquid–solid flows are studied and some pertinent literature is reviewed. Specifically, two conditions for the solids concentration in the flow are considered, including the dilute phase condition as in pneumatic convey and the dense phase condition as in bubbling or turbulent fluidized beds. Comparisons of the fundamental behavior are made of the gas–solid flow with dispersed non-evaporative as well as with evaporative liquids.For dilute phase conditions, experiments and analyses are conducted to examine the individual phase motion and boundaries of the evaporative region and the jet. Effects of the solids loading and heat capacity, system temperature, gas flow velocity and liquid injection angle on the jet behavior in gas and gas–solid flows are discussed. For dense phase conditions, experiments are conducted to examine the minimum fluidization velocity and solids distribution across the bed under various gases and liquid flow velocities. The electric capacitance tomography is developed for the first time for three-phase real time imaging of the dense gas–solid flow with evaporative liquid jets. The images reflect significantly varied bubbling phenomenon compared to those in gas–solid fluidized beds without evaporative liquid jets.  相似文献   

2.
Single-stage solid–gas reaction heat transformer system with the reactive salts of CaCl2 and MnCl2 was investigated. The system performances with gas valve control (closed protocol) were measured and compared with those without gas valve control (open protocol). The reasons of these differences were discussed. It was concluded that specific heating power (SHP), coefficient of performance (COP) and exergic COP (COPex) of the experimental set-up were improved with gas valve control. From the theoretical analysis, it was concluded that the improvement of system performances was mainly due to the difference of gas pressure in system operation, while not the multi-step reactions between CaCl2 and NH3. Further improvements of the performances of experimental set-up were also proposed. It was concluded that conducting heat recovery process would increase system COP and COPex, and converting to novel two-stage system with reactive salts of CaCl2, MnCl2 and FeCl2 would increase temperature lift ΔT.  相似文献   

3.
《Ceramics International》2001,27(2):123-133
The substantial densification, that occurred in the SiC–Al–Y–O system was explained in the present work by analysing possible chemical reactions and their dependence on initial particle associations, i.e. homogeneity of mixing, the physical and chemical state of additives, pressurised sintering environment over the reactants and temperature of sintering. Hydroxyhydrogel powder precursors were found to be better than mechanically mixed SiC–YAG powder and pre-forming of YAG by holding the specimens at the temperature of 1400°C for 2 h were found to be the best. Decomposition reactions within the system could be controlled by using finer SiC and applying gas pressure over the reactants.  相似文献   

4.
The use of bismuth-based catalysts is promising for formate production by the electroreduction of CO2 captured from waste streams. However, compared to the extensive research on catalysts, only a few studies have focused on electrochemical reactor performance. Hence, this work studied a continuous-mode gas–liquid–solid reaction system for investigating CO2 electroreduction to formate using Bi-catalyst-coated membrane electrodes as cathodes. The experimental setup was designed to analyze products obtained in both liquid and gas phases. The influence of relevant variables (e.g., temperature and input water flow) was analyzed, with the thickness of the liquid film formed over the cathode surface being a key parameter affecting system performance. Promising results, including a high formate concentration of 34 g/L with faradaic efficiency for formate of 72%, were achieved.  相似文献   

5.
《Diamond and Related Materials》2001,10(9-10):1881-1885
The structure of the cBN films deposited by DC jet plasma CVD from an Ar-N2-BF3-H2 gas system was investigated by transmission electron microscopy and electron-energy-loss spectroscopy. A sequent layered-structure of Si/amorphous /hexagonal/cubic BN was revealed, which was also confirmed by the confocal Raman technique. For comparison, the phase composition, crystal size and crystallinity of cBN films deposited for different times at initial growth stage were studied by infrared spectroscopy, Raman spectroscopy and glancing-angle X-ray diffraction. A columnar growth of the cBN grains with the average column width of approximately 0.2 μm was observed. The columns were proved to be cBN single crystals elongated from the nucleation sites on the hexagonal BN to the film surface. High-density twins and stacking faults were observed on the {111} planes of the cBN crystals, which subdivided the crystals into many lamellae of several to about 20 nm in thickness.  相似文献   

6.
A pressure swing adsorption (PSA) process for separating CO from a COCO2N2 mixture is proposed. The adsorbent used in this process is active carbon supported copper, which has been developed by this laboratory. By cycling the pressure of a bed of this adsorbent between ambient pressure and 20–30 Torr at room temperature, high purity CO can be obtained from the COCO2N2 gas mixture with a high recovery. The CO product purity depends crucially on the step of CO cocurrent purge after adsorption in the cycle and the regeneration of sorbent.  相似文献   

7.
To develop cost-effective CO2 capture technology process intensification will play a vital role. In this work, the capabilities of a gas–liquid vortex reactor (GLVR) as novel process intensification equipment are evaluated by studying its interphase mass transfer parameters to build up the fundamentals for its future application to for example, CO2 capture. The NaOH-CO2 chemisorption system and Danckwerts' model are applied to obtain the effective interfacial area and liquid-side mass transfer coefficient. Results show that the gas–liquid contact in the GLVR is capable of both generating a large interfacial area in a small reactor volume and creating a region with high-energy dissipation to improve mass transfer. A comparison of the volumetric mass transfer coefficients with data reported in literature for conventional and intensified reactor types confirms a superior mass transfer efficiency and, most importantly, a favorable energetic efficiency of the GLVR.  相似文献   

8.
Ceramics in the system MgO–SiO2–TiO2 were prepared by standard mixed oxide route. By adding ZnO–B2O3 to the starting mixtures, the firing temperature of the ceramics could be reduced to 1160 °C. Small additions of MnCO3 and CaTiO3 improve microwave dielectric properties leading to an increase in insulation resistance and a decrease in temperature coefficient of capacitance. By adding Co2O3 grain growth can be inhibited and the dielectric Qf value greatly increased. The resultant ceramic material exhibited low dielectric constant and low dielectric loss: relative permittivity (εr): 20±2; temperature coefficient of capacitance (τc): 0±30 ppm/°C; Qf: 100,000 (at 10 GHz); insulation resistance: 1013 Ω cm:  相似文献   

9.
The electrochemical behaviour of TiN-, TiN–AlN-, Cr- and CrN-coated 316L stainless steel in molten Li2CO3–K2CO3 and Na2CO3–K2CO3 melts in a reducing gaseous atmosphere (10% H2–90% N2) was studied using voltammetry and scanning electron microscopy combined with energy-dispersed X-ray analysis in the temperature range of 600–730 C. To facilitate the identification of the electrochemical reactions the voltammetric behaviour of stainless steel, titanium, nickel and gold was also investigated. Voltammetric characteristics obtained at AlN–TiN coated electrodes showed no anodic reactions at potentials more negative than that of CO2– 3 oxidation. Cr- and CrN-coated electrodes demonstrated a suppressed anodic dissolution after the first steady state voltammetric cycle. The voltammograms obtained for the other electrodes studied displayed the corresponding anodic metal-dissolution waves. TiN, AlN, Cr and CrN coatings seem to be the most promising as corrosion-resistant materials for the anodic compartments of molten carbonate fuel cells.  相似文献   

10.
An electrical resistance tomography (ERT) linear probe was used to measure gas hold-up in a two-phase (gas–liquid) and three phase (gas–solid–liquid) stirred-tank system equipped with a Rushton turbine. The ERT linear probe was chosen rather than the more commonly used ring cage geometry to achieve higher resolution in the axial direction as well as its potential for use on manufacturing plant. Gas-phase distribution was measured as a function of flow regime by varying both impeller speed and gas flow rate. Global and local gas hold-up values were calculated using ERT data by applying Maxwell's equation for conduction through heterogeneous media. The results were compared with correlations, hard-field tomography data, and computational fluid dynamic simulations available in the literature, showing good agreement. This study thus demonstrates the capability of ERT using a linear probe to offer, besides qualitative tomographic images, reliable quantitative data regarding phase distribution in gas–liquid systems.  相似文献   

11.
The solubility of AH3, CAH10, C2AH7.5, and C3AH6 was determined experimentally at 7 to 40 °C and up to 570 days. During the reaction of CA, at 20 °C and above initially C2AH7.5 formed which was unstable in the long-term. The solubility products calculated indicate that the solubilities of CAH10, C2AH7.5 and C4AH19 increase with temperature while the solubility of C3AH6 decreases. Thus at temperatures above 20 °C, C3AH6 is stable, while at lower temperature also CAH10 and C4AH19 are stable, depending on the C/A ratio.At early hydration times, CAH10 can be stable initially at 30 °C and above, as the formation of amorphous AH3 stabilises CAH10 with respect to C3AH6 + 2AH3. With time, as the solubility AH3 decreases due to the formation of microcrystalline AH3, CAH10 becomes unstable at 20 °C and above.  相似文献   

12.
The wetting resistance of poly(vinylidene fluoride) (PVDF) membrane is a critical factor which determines the carbon dioxide (CO2) absorption performance of the gas–liquid membrane contactors. In this study, the composite PVDF–polytetrafluoroethylene (PTFE) hollow fiber membranes were fabricated through dry-jet wet phase-inversion method by dispersing PTFE nanoparticles into PVDF solution and adopting phosphoric acid as nonsolvent additive. Compared with the PVDF membrane, the composite membranes presented higher CO2 absorption flux due to their higher effective surface porosity and surface hydrophobicity. The composite membrane with addition of 5 wt % PTFE in the dope gained the optimum CO2 absorption flux of 9.84 × 10−4 and 2.02 × 10−3 mol m−2 s−1 at an inlet gas (CO2/N2 = 19/81, v/v) flow rate of 100 mL min−1 by using distilled water and aqueous diethanolamine solution, respectively. Moreover, the 5% PTFE membrane showed better long-term stability than the PVDF membrane regardless of different types of absorbent, indicating that polymer blending demonstrates great potential for gas separation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47767.  相似文献   

13.
《Electrochimica acta》1987,32(11):1607-1611
Internal mobility ratios of two cations in the molten binary system (Li, K)(CO3)0.5 have been measured with the Klemm method. From these and available data on the densities and conductivities, the internal mobilities of Li+ and K+ have been calculated. Except at a region of relatively high concentration of Li2CO3, the Chemla effect occurs, that is, the mobility of the large cation K+ is greater that of the small one Li+. The internal mobilities of Li+ ions are well expressed by bLi = [A/(VV0)] exp (− E/RT), where A, V0 and E are constants characteristic of the cation and independent of temperature T, V the molar volume of mixtures, and R the gas constant. Negative deviations from this equation at a small V region may be attributed to the free space effect. For bK such a simple equation does not hold over an extended region of concentration, which suggests that the agitation effect and the free space effect would also play a role for the mobility.  相似文献   

14.
The difference of Gibbs free energy between tetragonal and monoclinic phases in ZrO2–CeO2–Y2O3 as a function of composition and temperature is thermodynamically calculated from the three related binary systems. In 8 mol% CeO2–0.5 mol% Y2O3–ZrO2, the equilibrium temperature between tetragonal and monoclinic phases, T0, is obtained as 832.5 K and the Ms temperature of this alloy with a mean grain size of 0.90 μm is calculated as 249.9 K using the approach derived by Hsu et al. [J. Mater. Sci., 18(1983)3206; 20(1985)23; Acta Metall., 37(1989)3091; Acta Metall. Mater., 39(1991)1045; Mater. Trans. JIM, 37(1996)1284], which is in good agreement with the experimental one of 253 K.  相似文献   

15.
The local structure around Zr, Ce and dopant atoms (Fe and Ni) in the ZrO2–CeO2 system investigated by X-ray absorption spectroscopy (XAS) is reported to better understand the tetragonal phase stabilization process of zirconia. The first coordination shell around Zr atoms is not sensitive to the introduction of dopants or to an increase in the ceria content (from 12 to 20 mol%). Ce ions maintain the eight-fold coordination as in CeO2, but with an altered bond distance. The formation of vacancies resulting from reduction of Ce atoms can be discarded, because XANES spectra clearly show that Ce ions are preferentially in a tetravalent state. XANES and EXAFS experiments at the Fe K-edge evidence that the local order around Fe is quite different from that of the Fe2O3 oxide. On the one hand, ab initio EXAFS calculations show that iron atoms form a solid solution with tetragonal ZrO2. The EXAFS simulation of the first coordination shell around iron evidences that the substitution of zirconium atoms by iron ones generates oxygen vacancies into the tetragonal network. This is a driven force for the tetragonal phase stabilization process. For Ni doped samples, EXAFS results show that Ni–O mean bond length is similar to the distance found in the oxide material, i.e., NiO compound. Besides this result, no evidence of similar solid solution formation for Ni-doped systems has emerged from the EXAFS analysis.  相似文献   

16.
This paper shows the recent results on the development of layered composite promoting two types of electrochemical reactions (oxidation and reduction) in one cell. This cell consisted of porous Ni–Gd-doped (GDC) ceria cathode/thin porous GDC electrolyte (50 μm)/porous SrRuO3–GDC anode. The external electric current was flowed in this cell at the electric field strength of 1.25 and 6.25 V/cm. The mixed gases of CH4 (30–70%) and CO2 (70–30%) were fed at the rate of 50 ml/min to the cell heated at 400–800 °C under the electric field. In the cathode, CO2 was reduced to CO (CO2 + 2e?  CO + O2?) and the formed CO and O2? ions were transported to the anode through the pores and surface and interior of grains of GDC film. On the other hand, CH4 was oxidized in the anode to form CO and H2 through the reaction with diffusing O2? ions (CH4 + O2?  CO + 2H2 + 2e?). As a result, H2–CO mixed fuel was produced from the CH4–CO2 mixed gases (CH4 + CO2  2H2 + 2CO). This electrochemical reaction proceeded completely at 800 °C and no blockage of gases was measured for long time (>10 h). Only H2–CO fuel was generated in the wide gas compositions of starting CH4–CO2 gases.  相似文献   

17.
18.
In this paper, the real time, dynamic phenomena of the three-dimensional horizontal gas and gas/solid mixture jetting in a 0.3 m (12 in) bubbling gas–solid fluidized bed are reported. The instantaneous properties of the shape of the jets and volumetric solids holdup are qualified and quantified using the three-dimensional electrical capacitance volume tomography (ECVT) recently developed in the authors’ group. It is found that the horizontal gas jet is almost symmetric along the horizontal axis during its penetration. As the jet width expands, the total volume of the gas jet increases. A mechanistic model is also developed to account for the experimental results obtained in this study. Comparison of jet penetration length and width between the model prediction and ECVT experiment shows that both the maximum penetration length and the maximum width of the horizontal gas jet increase with the superficial gas velocity. When the horizontal gas jet coalesces with a bubble rising from the bottom distributor, it loses its symmetric shape and can easily penetrate into the bed. For the horizontal gas/solid mixture jet penetration in the bed, the tail of the jet at the nozzle shrinks and the jet loses its jet shape immediately when the jet reaches its maximum penetration length, which are different from the characteristics exhibited by the gas jet. The solids holdup in the core region of the gas/solid mixture jet is higher than that in the gas jet. The penetration length of the horizontal gas/solid mixture jet is also larger than that of the gas jet.  相似文献   

19.
Given their unique and tunable properties as solvents, ionic liquids (ILs) have become a favorable solvent option in separation processes, particularly for capturing carbon dioxide (CO2). In this work, a simple method that can be used to screen the suitable IL candidates was implemented in our modified gas–liquid membrane contactor system. Solubilities, selectivities of CO2, nitrogen (N2), and oxygen (O2) gases in imidazolium-based ILs and its activity coefficients in water and monoethanolamine (MEA) were predicted using conductor-like screening model for real solvent (COSMO-RS) method over a wide range of temperature (298.15–348.15?K). Results from the analysis revealed that [emim] [NTf2] IL is a good candidate for further absorption process attributed to its good hydrophobicity and CO2/O2 selectivity characteristics. While their miscibility with pure MEA was somehow higher, utilizing the aqueous phase of MEA would be beneficial in this stage. Data on absorption performances and selectivity of CO2/O2 are scarce especially in gas–liquid membrane contactor system. Therefore, considering [emim] [NTf2] IL as a supporting material in supported ionic liquid membranes (SILMs), using aqueous phase of MEA as an absorbent would result in a great membrane-solvent combination system in furthering our gas–liquid membrane contactor process. In conclusion, COSMO-RS is a potentially great predictive utility to screen ILs for specified separation applications. In addition, this work provides useful results for the [emim] [NTf2]-SILMs to be extensively applied in the field of CO2 capture and selective O2 removal.  相似文献   

20.
《应用陶瓷进展》2013,112(6):271-273
Abstract

The phase relations in the system ZrO2–La2Zr2O7– Y2Zr2O7 have been investigated using X-ray diffraction. Mixed oxide phase assemblages were prepared by hydrolysing zirconium butoxide with solutions of Y and La nitrates, followed by drying, calcining, and sintering. The cubic zirconia phase can accept into solid solution the larger, non-cubic stabilising lanthanum ion in the presence of a suitable proportion of the cubic stabilising oxide of yttrium. As the amount of the larger rare earth element ion is increased formation of pyrochlore and tetragonal type compounds is favoured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号