首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2016,42(12):14094-14099
The effect of graphene concentration on the photovoltaic and UV detector applications of ZnS/graphene nanocomposites was investigated. The nanocomposites were synthesized by a green, cost-effective, and simple co-precipitation method with different graphene concentrations (5, 10, and 15 wt%) using L-cysteine amino acid as a surfactant and graphene oxide (GO) powder as a graphene source. Transmission electron microscopy (TEM) images showed that the ZnS NPs were decorated on GO sheets and the GO caused a significant decrease in ZnS diameter size. The results of X-ray diffraction (XRD) patterns, Raman, and Fourier transform infrared (FTIR) spectroscopy indicated that the GO sheets were changed into reduced graphene oxide (rGO) during synthesis process. Therefore, L-cysteine amino acid played its role as a reducing agent to reduce the GO. Photovoltaic measurements showed that the graphene caused to increase the efficiency of solar-cell application of ZnS/rGO nanocomposites. In addition, our observation showed that the nanocomposites were suitable as ultraviolet (UV) detectors and graphene concentration increased the responsibility of the detectors.  相似文献   

2.
Reduced graphene oxide (rGO) with various surface structures was prepared by reducing graphene oxide (GO) with hydrazine hydrate (N2H4), sodium borohydride (NaBH4) and l ‐ascorbic acid, respectively. The resulting rGO were used to fabricate rGO/polypropylene (PP) nanocomposites by a melt‐blending method. The surface structure of rGO as well as multifunctional properties of rGO/PP nanocomposites were thoroughly investigated. It was shown that rGO with highest C/O ratio could be obtained by reducing GO with N2H4. The crystallization behaviors, tensile strength, thermal conductivity and thermal stability of rGO/PP nanocomposites were significantly improved with the increase of C/O ratio of rGO. For example, with only 1 phr (parts per hundred PP) rGO reduced by N2H4, the degree of crystallinity, tensile strength, maximum heat decomposition temperature and thermal conductivity of PP nanocomposite were increased by 6.2%, 20.5%, 48.0 °C and 54.5%, respectively, compared with those of pure PP. Moreover, the thermal degradation kinetics indicated that the decomposition activation energy of rGO/PP nanocomposites could be enhanced by adding rGO with higher C/O ratio. © 2018 Society of Chemical Industry  相似文献   

3.
Ceramic matrix nanocomposites containing graphene possess superior mechanical properties. However, these nanocomposites are very difficult to be prepared using the conventional methods due to severe grain growth and simultaneous degradation of the graphene at high sintering temperatures and long dwell time. Herein, the dense ZrO2/rGO (reduced graphene oxide) nanocomposites are successfully fabricated by flash sintering of the green compacts consisting of ZrO2 nanoparticles and graphene oxide (GO) at 893–951℃ in merely 5 seconds under the alternating current (AC) electric fields of 130–150 V cm−1. The GO can be in situ thermal reduced during the flash sintering. The as-prepared ZrO2/rGO nanocomposites exhibit excellent mechanical properties. This study presents a green and simple approach to fabricate the dense ceramic matrix nanocomposites reinforced with graphene at low temperatures in a short time.  相似文献   

4.
Ates  Murat  Yildirim  Murat 《Polymer Bulletin》2020,77(5):2285-2307
Polymer Bulletin - In this work, reduced graphene oxide (rGO) was obtained by chemical reduction of graphene oxide (GO) using sodium borohydride (NaBH4). Four different nanocomposites rGO/ruthenium...  相似文献   

5.
Graphene/polybenzimidazobenzophenanthroline nanocomposites were prepared through the liquid-phase exfoliation of graphene oxide (GO) and reduced graphene oxide (rGO) in methanesulfonic acid with subsequent solution mixing. Various chemical and combined chemical-thermal methods were examined to be effective for producing rGO with highly graphitic structure and excellent electrical conductivity. Raman and X-ray photoelectron spectroscopy showed higher degree of reduction of the GO with the combined chemical-thermal method compared to other chemical reduction processes. Structural characterization of the nanocomposites by X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed good exfoliation and dispersion of both GO and rGO fillers in the polymer matrix. The thermogravimetric analysis found that the nanocomposites with rGO have higher onset and maximum weight loss temperatures than those with GO. Compared with the pure polymer, the electrical conductivity of the nanocomposites containing 10 wt% GO and GO reduced by the combined chemical-thermal treatment showed a remarkable increase by four and seven orders of magnitude, respectively. Long-term in-situ thermal reduction was performed to further improve the conductivities of the nanocomposites.  相似文献   

6.
Zhu J  Zhu T  Zhou X  Zhang Y  Lou XW  Chen X  Zhang H  Hng HH  Yan Q 《Nanoscale》2011,3(3):1084-1089
We report an environment-friendly approach to synthesize transition metal oxide nanoparticles (NPs)/reduced graphene oxide (rGO) sheets hybrids by combining the reduction of graphene oxide (GO) with the growth of metal oxide NPs in one step. Either Fe2O3 or CoO NPs were grown onto rGO sheets in ethanol solution through a solvothermal process, during which GOs were reduced to rGO without the addition of any strong reducing agent, e.g. hydrazine, or requiring any post-high-temperature annealing process. The GO or rGO during the precipitation of metal oxide NPs may act as heterogeneous nucleation seeds to facilitate the formation of small crystal grains. This may allow more efficient diffusion of Li ions and lead to high specific capacities. These metal oxide NPs-rGO hybrids were used as anodes for Li-ion batteries, which showed high capacities and excellent charge-discharge cycling stability in the voltage window between 0.01 and 3.0 V. For example, Fe2O3 NPs/rGO hybrids showed specific capacity of 881 mA h g(-1) in the 90th cycle at a discharge current density of 302 mA g(-1) (0.3 C), while CoO NPs/rGO hybrids showed a lower capacity of 600 mA h g(-1) in the 90th cycle at a discharge current density of 215 mA g(-1) (0.3 C). These nanohybrids also show excellent capacities at high C rate currents, e.g. 611 mA h g(-1) for Fe2O3/rGO sample in the 300th cycle at 2014 mA g(-1) (2 C). Such synthesis technique can be a promising route to produce advanced electrode materials for Li-ion batteries.  相似文献   

7.
A facile, eco-friendly and economical approach was demonstrated for the synthesis of gold-decorated reduced graphene oxide nanocomposites (rGO–Aunano) using beer as a reducing agent via a hydrothermal method. The phenolic compounds of beer play a key role in the reduction of graphene oxide and the gold precursor. The obtained rGO–Aunano was characterized by X-ray diffraction, UV–vis absorption spectroscopy, electron microscopy, atomic force microscopy and the electrochemical impedance spectroscopy. Analysis revealed that the electron-transfer resistance of rGO–Aunano/GCE was much lower than that of the GCE and GO/GCE. The proposed nanocomposites have excellent electrocatalytical properties for catalytic reduction of O2 in solution.  相似文献   

8.
Among many methods to synthesize graphene, solution-based processing provides many advantages owing to its low cost, high productivity, chemical versatility, and scalability. In particular, graphene oxide (GO) is one of the most promising nanocarbons that enable the incorporation of graphene and related materials into bulk materials and nanocomposites. GO has hydrophilic nature that enables straightforward dispersion in aqueous solution by sonication, but GO show poor dispersibility in common organic solvents, which prevent much wider applications such as solution-mixing polymer nanocomposites. Here we prepared highly soluble, functionalized GO in both aqueous and non-aqueous solvents. This was achieved by reacting polyetheramine consisting of amphiphilic components, e.g., polypropylene oxide and polyethylene oxide, with carboxylic acid groups at GO edges. Moreover, the reduced GO (rGO) was also highly dispersible in aqueous solution as well as non-aqueous solutions. These functionalized GO and rGO can be used for many solution-processed graphene composites.  相似文献   

9.
Reduced graphene oxide (rGO) has shown great promise as an air-cathode for Li–air batteries with high capacity. In this article we demonstrate how the oxidation time of graphene oxide (GO) affects the ratio of different functional groups and how trends of these in GO are extended to chemically and thermally reduced GO. We investigate how differences in functional groups and synthesis may affect the performance of Li–O2 batteries. The oxidation timescale of the GO was varied between 30 min and 3 days before reduction. Powder X-ray diffraction, micro-Raman, FE-SEM, BET analysis, and XPS were used to characterize the GO’s and rGO’s. Selected samples of GO and rGO were analyzed by solid state 13C MAS NMR. These methods highlighted the difference between the two types of rGO’s, and XPS indicated how the chemical trends in GO are extended to rGO. A comparison between XPS and 13C MAS NMR showed that both techniques can enhance the structural understanding of rGO. Different rGO cathodes were tested in Li–O2 batteries which revealed a difference in overpotentials and discharge capacities for the different rGO’s. We report the highest Li–O2 battery discharge capacity recorded of approximately 60,000 mAh/gcarbon achieved with a thermally reduced GO cathode.  相似文献   

10.
A self-assembly polymerization process was used to prepare graphene oxide/boron carbide (GO/B4C) composite powders, spark plasma sintering (SPS) was used to fabricate reduced graphene oxide/boron carbide (rGO/B4C) composites at 1800 °C and 30 MPa with a soaking time of 5 min. The effects of rGO addition on mechanical properties of the composites, such as Vickers hardness, flexural strength and fracture toughness, were investigated. The results showed that GO/B4C composite powders were successfully self-assembled and a network structure was formed at high GO contents. The flexural strength and fracture toughness of rGO/B4C composites were 643.64 MPa and 5.56 MPa m1/2, respectively, at 1 and 2.5 wt.% rGO content, corresponding to an increase of 99.11% and 71.6% when compared to B4C ceramics. Uniformly dispersed rGO in rGO/B4C composites played an important role in improving their strength and toughness. The toughening mechanisms of rGO/B4C composites were explained by graphene pull-out, crack deflection and bridging.  相似文献   

11.
The curing kinetics of epoxy nanocomposites prepared by incorporating graphene oxide (GO) and chemically reduced graphene oxide (rGO) have been studied using isothermal and nonisothermal differential scanning calorimetry. The kinetic parameters of the curing processes in these systems have been determined by a Kamal and Sourour phenomenological model expanded by a diffusion factor. The predicted curves determined using the kinetic parameters fit well with the isothermal DSC thermograms revealing the proposed kinetic equation clearly explains the curing kinetics of the prepared epoxy amine nanocomposites. Experimental and modeling results demonstrate the presence of an accelerating effect of the GO on the cure of the resin matrix. The use of rGO instead of GO resulted in a slight acceleration reaction rate due to the reduced presence of oxidation groups in rGO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44803.  相似文献   

12.
This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up to 134.3 F g?1 recorded. This capacitance value is higher than those observed for LAA-reduced GO (LAA-rGO) (63.5 F g?1), electrochemically reduced GO (EC-rGO) (27.6 F g?1), or electrochemically reduced GO/MWNTs (EC-rGO/MWNTs) (98.4 F g?1)-based electrodes.  相似文献   

13.
The present work demonstrates a facile route for preparing LaFeO3/rGO nanocomposites comprising of metal oxide nanoparticles and graphene. Structural, morphology, optical and photocatalytic studies of the samples were characterized using powder X-ray diffraction (XRD), FT-IR, Raman, high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), thermogravimetry (TGA), X-ray photoelectron spectroscopy, UV–visible and photocatalytic. LaFeO3/rGO nanocomposites believed as an effective photocatalyst for the degradation of methyl orange (MO) dye under visible light irradiation. The inclusion of carbon enhances the light absorption of LaFeO3, resulting in the enhanced photocatalytic activity of the nanocomposite. The degradation of MO dye under visible light source was completely achieved using LaFeO3/rGO as a catalyst.  相似文献   

14.
Currently, there is great interest in graphene‐based devices and applications because graphene has unique electronic and material properties, which can lead to enhanced material performance. Graphene may be used in a wide variety of potential applications from next‐generation transistors to lightweight and high‐strength polymeric composite materials. Graphene, which has atomic thickness and two‐dimensional sizes in the tens of micrometer range or larger, has also been considered a promising nanomaterial in gas‐ or liquid‐barrier applications because perfect graphene sheets do not allow diffusion of small gases or liquids through its plane. Recent molecular simulations and experiments have demonstrated that graphene and its derivatives can be used for barrier applications. In general, graphene and its derivatives can be applied via two major routes for barrier polymer applications. One is the transfer or coating of few‐layered, ultrathin graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), on polymeric substrates. The other is the incorporation of fully exfoliated GO or rGO nanosheets into the polymeric matrix. In this article, we review the state‐of‐the‐art research on the use of graphene, GO, and rGO for barrier applications, including few‐layered graphene or its derivatives in coated polymeric films and polymer nanocomposites consisting of chemically exfoliated GO and rGO nanosheets, and their gas‐barrier properties. As compared to other nanomaterials being used for barrier applications, the advantages and current limitations are discussed to highlight challenging issues for future research and the potential applications of graphene/polymer, GO/polymer, and rGO/polymer composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39628.  相似文献   

15.
A route based on aqueous colloidal processing followed by liquid-phase assisted spark-plasma-sintering (SPS) is described for fabricating eco-friendly nanocomposites of SiC with nano-carbonaceous phases (nanotubes, nanoplatelets, or nanoparticles). To this end, the conditions optimizing the aqueous colloidal co-dispersion of SiC nanoparticles, Y3Al5O12 nanoparticles (acting as sintering additives), and carbon nanotubes (CNTs), graphene oxide (GO) nanoplatelets, or carbon black (CB) nanoparticles were first identified. Next, homogeneous powder mixtures were prepared by freeze-drying, and densified by liquid-phase assisted SPS, thus obtaining nanocomposites of SiC with CNTs, reduced GO (rGO) nanoplatelets, or pyrolized?+?graphitized CB (p?+?gCB) nanoparticles. It is also shown that these nanocomposites are dense and have a high hardness of ~20?GPa regardless of the nano-carbonaceous phase chosen, but are markedly tougher with CNTs and rGO (i.e., with high aspect ratio nano-carbonaceous phases). Finally, arguments are provided for the appropriate choice of nano-carbonaceous phases for engineering ceramic nanocomposites.  相似文献   

16.
《Ceramics International》2019,45(11):13923-13933
In the present study, a simple UV-assisted sonication method is used for the development of bismuth sulfide (Bi2S3) nanostructures on graphene sheets. X-ray diffraction (XRD) and Raman results indicated that graphene oxide (GO) layers are reduced. Field emission scanning electron microscopy (FESEM) images also indicated that Bi2S3 particles without rGO sheets are agglomerated. In comparison, when adding these sheets, the particles are uniformly spread (decorated) and their size is reduced significantly due to the incorporation of rGO sheets. UV–Vis studies reveal that the band gap in Bi2S3/rGO nanocomposites compared with Bi2S3 has a shift toward shorter wavelengths, suggesting some changes in the electronic band structure of Bi2S3 due to the existence of rGO sheets. Photoluminescence (PL) analysis indicated emission bands in infrared and visible regions resulting from the band edge emission and crystal defects in the samples, respectively. The electrical investigations showed reduced recombination of photogenerated carriers in the nanocomposites. Moreover, the results indicated that the concentration of rGO is an important factor in determining the optoelectrical behavior of these devices.  相似文献   

17.
The current work reports the preparation and characterization of polyvinyl alcohol (PVA) composite fibres reinforced with graphene reduced from graphene oxide (GO) by using oligomeric proanthocyanidin (OPC) as a reductant. After reduction, most of the oxygen‐containing groups were removed from the GO and reduced graphene oxide (rGO) was prepared. As a result of combined OPC as a dispersant, rGO could be well dispersed in a dimethyl sulfoxide/H2O mixed solvent and in PVA matrix, and the PVA/rGO dispersion was wet spun followed by hot drawing to prepare continuous PVA/rGO composite fibres. The PVA/rGO composite fibres exhibited a significant enhancement of mechanical properties at low rGO loadings; in particular the tensile strength and Young's modulus of the 2.0 wt% rGO and PVA composite fibre increased to 244% and 294% respectively relative to neat PVA fibre. Moreover, the storage modulus (?10 °C) and Tg increased to 300% and 7.2 °C, respectively. © 2016 Society of Chemical Industry  相似文献   

18.
High thermal conductivity of nanocomposite-based polymer matrix is one of the most important keys in developing many heat exchanger instruments. Here, we report a novel nanocomposite system based on silver-coated reduced graphene oxide (Ag/rGO) in silane cross-linked low-density polyethylene (XLPE) matrix with unprecedented through-plane thermal conductivity. Compared to the virgin rGO, Ag/rGO nanocomposite showed 67% higher thermal conductivity due to the Ag nanoparticles (NPs) decoration. The Ag NPs within the nanocomposites are believed to act as a thermal conductor among rGO nanosheets and eventually enhance the heat conduction in 3D manner.  相似文献   

19.
A simple and facile method for multiscale, in-plane patterning of graphene oxide and reduced graphene oxide (GO–rGO) was developed by region-specific reduction of graphene oxide (GO) under a mild irradiation. The UV-induced reduction of graphene oxide was monitored by various spectroscopic techniques, including optical absorption, X-ray photoelectron spectroscopy (XPS), Raman, and X-ray diffraction (XRD), while the resultant GO–rGO patterned film morphology was studied on optical microscope, scanning electron microscope (SEM), and atomic force microscope (AFM). Flexible symmetric and in-plane supercapacitors were fabricated from the GO–rGO patterned polyethylene terephthalate (PET) electrodes to show capacitances up to 141.2 F/g.  相似文献   

20.
The sulfonated reduced graphene oxide (S-rGO) as supports and size-controlled Pt nanoparticles (NPs) for proton exchange membrane fuel cell (PEMFC) catalysts was investigated. The S-rGO was fabricated by a lyophilization-assisted method from a liquid mixture of GO and (NH4)2SO4 with a subsequent thermal treatment in inert gas. Sulfonic acid groups were grafted on GO and a reduction of GO was achieved simultaneously. Transmission electron microscope (TEM) results showed a uniform deposition of Pt NPs on S-rGO (Pt/S-rGO) with a narrow particle size distribution ranging from 2 to 5 nm in diameter. A higher catalytic activity of this novel Pt/S-rGO catalyst was revealed in comparison with that of Pt/GO, Pt/rGO and conventional Pt/C catalysts by cyclic voltammetry and oxygen reduction reaction measurements due to an enhanced triphase boundary. Significantly, the Pt/S-rGO catalyst also presented an excellent electrochemical stability. This new catalyst thus holds a great potential application in PEMFCs in terms of enhanced activity and durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号