首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

2.
《Ceramics International》2023,49(2):2394-2400
It is well known that aqueous gel-casting is challenging to prepare high-porosity ceramics due to the considerable drying shrinkage, cracking, and deformation of green bodies during drying caused by the high surface tension of water. Porous Y2SiO5 ceramics with high porosity were prepared by introducing carbon fibers as a support material in the drying process of aqueous gel-casting to reduce shrinkage during drying. Burning out the carbon fibers after drying does not negatively affect the properties of the porous ceramic. As prepared green bodies by aqueous gel-casting have low shrinkages of 8.69%–6.81% during drying processes and high compressive strength of 13.73 ± 1.55–10.66~0.49 MPa. The higher compressive strength of the green body has a positive significance for processing porous ceramics into special-shaped structures. As prepared porous Y2SiO5 ceramics have high porosity of 73.94%–87.71%, lightweights of 1.16–0.55 g?cm3, extremely low thermal conductivities of 0.134 ± 0.006 to 0.051 ± 0.001 W?m?1?k?1, relatively low dielectric constants of 2.34–1.58, and tan δ are lower than 1.25 × 10?3. Porous Y2SiO5 ceramics with excellent dielectric properties and thermal insulation properties meet the requirements of thermal insulation and wave transmission integration of radome materials. Aqueous gel-casting also enriches the preparation methods of high-porosity Y2SiO5 ceramics.  相似文献   

3.
High-temperature properties including compressive strength, thermal shock behavior, and thermal conductivity of porous anorthite ceramics with high specific strength were tested and analyzed. The results showed that the prepared materials merit high-temperature compressive strength, thermal stability, and conductivity. With the appropriate fabrication parameters, even though containing 0.33 g/cm3 bulk density and 88.2% porosity, its compressive strength could reach 2.03 MPa at 1000°C, 147% of that at room temperature; the residual strength ratio kept as 114.7% after a thermal shock at 1200°C. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that anorthite grains refinement and intergranular voids filling by liquid phase were main factors for the high strength. From room temperature to 1200°C, its thermal conductivity only varied from 0.085 to 0.258 W·(m·K)−1. High porosity, a large number of nanoregions in anorthite grains and amorphous phase in grain boundary were main reasons for low thermal conductivity.  相似文献   

4.
Highly porous nano-SiC is fabricated by partial sintering and decarburizing process using SiC nano-powders as starting materials and graphite flakes as pore forming agents. The prepared porous nano-SiC ceramics possess multiple pore structures, including well-distributed meso-pores in the skeleton and interconnected flakelike micro-pores. The samples prepared at 1800 °C have relatively low thermal conductivities of 5.61  0.25 W m?1 K?1 with porosities of 55.5–76.1%. While the samples sintered at 1500 °C with porosities between 54.0% to 76.3% show very low thermal conductivities of 0.74  0.14 W m?1 K?1, which is attributed to the integrated nano-scale phonon-scattering mechanisms and duplex pore structures. Porous nano-SiC ceramics also show good retention of elastic stiffness up to 1350 °C and low thermal conductivity at 1400 °C. Our results shed light on porous nano-SiC as a promising thermal insulator used in extreme thermal and chemical environments.  相似文献   

5.
Porous anorthite/mullite whiskers ceramics with high porosity (>91%) and high strength (>0.45 MPa) have been successfully prepared by foam gel-casting method. Effects of extra mullite whiskers on properties including thermal conductivity and compressive strength at different temperatures were investigated and discussed in terms of microstructure observed through SEM and TEM. The results showed that the addition of extra mullite whiskers in certain content could effectively reduce thermal conductivity, improve the compressive strength both at room and high temperature at same time. When the mullite whiskers content was 20 mol%, the porosity was as high as 91.6 ± 0.19%, the thermal conductivity was low to 0.034 ± 0.003 W/(m·K), and the compressive strength at 1000°C was high to 0.64 ± 0.11 MPa three times to the pure one. Small pores, small grains, and more phase interface or grain boundary caused by the addition of extra mullite whiskers were the main factors for low thermal conductivity. Meanwhile, small pores, closely bonded small grains, and the stable three-dimension network formed by mullite whiskers helped to improve strength.  相似文献   

6.
Porous anorthite/mullite ceramics with both high porosity and high strength have been successfully fabricated by foam-gelcasting and pressureless sintering technology, using α-Al2O3, SiO2, and CaCO3 as starting materials and MnO2 as sintering aids. The porous mullite ceramics prepared in this study had 83.3% porosity and 0.3 W/m·K thermal conductivity, exhibited compressive strength value as high as 6.1 MPa. The samples fabricated with mullite content of 30 mol% possessed 79.4% porosity and 5.9 MPa compressive strength showed thermal conductivity as low as 0.19 W/m·K. With the addition of MnO2, the properties of the prepared materials varied slightly when mullite content changed in a large scale. The results showed that the addition of MnO2 promoted the reaction, affected sintering and grain growth, and contributed to high strength and low-thermal conductivity.  相似文献   

7.
The incorporation of a thermally insulating secondary phase can significantly increase the interfacial thermal resistance attributed to its low intrinsic thermal conductivity and the creation of multiple phonon scattering interfaces between adjacent SiC particles. The newly developed porous SiC-33 wt% SiO2 composites with SiO2 as a thermally insulating secondary phase exhibited a very low thermal conductivity (0.047 Wm−1 K−1, 72.4 % porous), which is an order of magnitude lower than the previously reported lowest thermal conductivity (0.14 Wm−1 K−1, 76.3 % porous) for powder processed porous SiC ceramics and is even lower than the thermal conductivity (0.060 Wm−1 K−1, 87.9% porous) of SiO2 aerogel. The porous SiC-(16–73 wt%) SiO2 composites processed from nano β-SiC and a 40 wt% carbon template exhibited a hierarchical (meso-/macro-porous) pore structure that transformed to a trimodal (micro-/meso-/macro-porous) porous structure when polysiloxane was added and sintering was performed at 600–1000 °C in air.  相似文献   

8.
《Ceramics International》2021,47(19):26991-27001
Hydroxyapatite (HA) scaffolds were fabricated using the space holder method with a pressureless sintering process in a systematically developed manner at different fabrication stages to increase the strength of the scaffold at high porosity. Polyvinyl alcohol (PVA) and Polymethyl methacrylate (PMMA) were used as binders and space holder agents, respectively. The physical properties of the HA scaffolds were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), linear shrinkage test, and porosity measurements. The mechanical properties of the HA scaffolds were analyzed using compressive strength measurements. The results revealed that the HA scaffold met the expected quality requirements with a compressive strength of 2.2 MPa at a porosity of 65.6% with pore sizes distributed in the range of 126–385 μm. The shrinkage of the scaffold diameter occurred by 20.27%, this diameter shrinkage predominantly to the shrinkage of the HA scaffold caused by sintering. Besides, suspect that a higher PMMA concentration causes pore size shrinkage upon sintering. The formation of pore interconnections was evidenced by SEM observations and the ‘translucent light method’ developed in this study. The results of the scaffold phase test using XRD showed that the final scaffold consisted only of the HA phase, as the PVA and PMMA phases burned out during the sintering process.  相似文献   

9.
Based on extrusion deposition and foaming technique, a novel method for biological hydroxyapatite (HA) scaffolds was introduced in this paper. The scaffolds were primarily characterised by interconnected and hierarchically porous structures with high porosity, adjustable distribution of pore sizes, as well as considerable mechanical strength. In order to confirm that fine control of bulk porosity and mechanical strength was possible and feasible, further analysis of obtained scaffolds was carried out by field emission scanning electron microscope (FESEM), compressive test and calculation of volumetric shrinkage; in particular, the additional porosity resulting from the introduction of pore former was evaluated. The results indicated that this method can have a great potential to construct HA scaffolds of suitable quality for spongy bone in bone tissue engineering.  相似文献   

10.
Silica sol is widely used in the preparation of mullite-based fiber porous ceramics (MFPCs), but it aggregates at the top surface of MFPCs during the drying process. This leads to the decrease in mechanical strength and porosity. To overcome the problem and fabricate homogeneous MFPCs, the sodium silicate solution and glass fibers were applied in the fabrication process of MFPCs. The effects of concentrations of sodium silicate solution and silica sol, amounts of glass fibers and sintering temperatures on the properties of prepared MFPCs were studied. The sodium silicate solution consolidated the silica sol and mullite fibers, forming a homogeneous structure and ensuring the even distribution of silica sol. Compared with other reported MFPCs, this process required low sintering temperature while maintaining high compressive strength (2.14 MPa) and porosity (75.93%). This study provides an effective method for preparing MFPCs with high strength, uniformity and porosity.  相似文献   

11.
《Ceramics International》2022,48(17):24496-24504
Ultra-low shrinkage porous TiB2-based ceramics reinforced by the TiB whiskers are firstly fabricated through the in-situ reaction between TiB2 and Ti at a low temperature (1450 °C). The growth of TiB whiskers with a high aspect ratio at pore channels is achieved through a vapor-solid growth mechanism, while low aspect ratio TiB whiskers at pore walls are dominated by a solid-state reaction diffusion growth, forming bimodal distribution whiskers in porous TiB2-based ceramics. The overlapping TiB whiskers with low-speed growth at particle contact points can significantly inhibit the shrinkage and improve the strength of porous TiB2-based ceramics. When the solid content is fixed at 20 vol% and target TiB content changes from 0 to 80 vol%, the porous ceramics show slight sintering shrinkage (from 1.1 to 4.7%) and high porosity (from 79.3 to 73.7%) while keeping high compressive strength of 1.8–18.2 MPa, which is higher than most reported porous ceramics at the same porosity.  相似文献   

12.
通过实验室球磨机制备出比表面积分别为280m2/kg、370m2/kg和670m2/kg的3种水泥熟料,与不同掺量的粉煤灰配制成不同颗粒级配的粉煤灰水泥,并测试了粉煤灰水泥浆体的抗压强度、自收缩、孔隙率和显微结构。结果表明:提高熟料细度能在很大程度上降低粉煤灰水泥浆体的孔隙率并提高复合水泥浆体早期抗压强度;粉煤灰的掺入降低了水泥体系的自收缩,提高了粉煤灰水泥浆体的体积稳定性;粉煤灰水泥浆体背散射图像表明,提高熟料细度可显著减少粉煤灰水泥浆体中未水化的水泥颗粒含量,并在一定程度上减少未水化粉煤灰颗粒含量。  相似文献   

13.
The preparation of refractories with both low thermal conductivity and high strength are continuously pursued in industrial furnaces. In this work, mullite refractories with low thermal conductivity and high strength were developed using fly ash as main raw material, and the influence of the quantity of fly ash and sintering temperature on the structure and properties of mullite refractories were investigated. The results show that mullite refractories with low thermal conductivity and high strength could be prepared by using fly ash in large proportion; the thermal conductivity of the samples decreased with the addition of the fly ash and increased with the increase of sintering temperature; the cold compressive strength and modulus of rupture of samples all are enhanced with the increase of sintering temperature, which is attributed to the formation of more elongated mullite by the reconstruction of fly ash at high temperature. For the mullite refractory using 65.04 wt% fly ash treated at 1600°C, the thermal conductivity was .732W/(m·k) at 1000°C, and the cold compressive strength and modulus of rupture could reach 143.5 ± 5.7 MPa and 47.0 ± 4.1 MPa respectively. It can be considered to use as a prospective work lining in industrial furnaces to meet energy saving requirements.  相似文献   

14.
生产实践证明,在强研磨性或高硬度岩石钻进、切割过程中,在新型陶瓷材料机加工过程中,片状工艺生产的金刚石能够克服粉末工艺料出现的打滑或提前失效等问题,表现出突出的高锋利度、耐磨性和热稳定性.通过近三十年的金刚石合成及应用实践,结合晶体生长原理,结晶学基础理论以及与两面顶合成工艺的对比,文章概述了片状工艺金刚石合成工艺思路...  相似文献   

15.
A simple heterogeneous synthesis of pure modified porous polysiloxane SiO2 by condensing a functionalized C,C‐pyridylpyrazole with a 3‐glycidoxy‐propyltrimethoxy‐silane silylant agent, previously anchored on a silica surface is reported. The epoxide group was opened yielding a receptor pendant group bonded to the inorganic surface. The surface modification (MS) was characterized by elemental analysis, infrared spectra, nitrogen adsorption–desorption isotherm, BET surface area and B.J.H. Pore sizes. The new material exhibits good chemical and thermal stability determined by thermogravimetry curves. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Diatomite powder, a naturally occurring porous raw material, was used to fabricate ceramic materials with bimodal porosity and high strength. The effect of the sintering temperature on the density and porosity of dry pressed diatomite green bodies was evaluated using mercury porosimetry and water immersion measurements. It was found that the intrinsic porosity of the diatomite particles with a pore size around 0.2 µm was lost at sintering temperatures above 1200 °C. Maintaining the sintering temperature at around 1000 °C resulted in highly porous materials that also displayed a high compressive strength. Microstructural studies by scanning electron microscopy and energy-dispersive X-ray analysis suggested that the pore collapse was facilitated by the presence of low melting impurities like Na2O and K2O.  相似文献   

17.
Porous Y2SiO5 ceramics with relative high compressive strength (as high as 24.45 MPa) and ultra-low thermal conductivity (~0.08 W/m K) were successfully fabricated by a tert-butyl alcohol based gel-casting method. The formation mechanism of the 3D interconnected pores and the properties of the green body are discussed. The porosity, pore size, compressive strength and thermal conductivity could be controlled by varying the initial solid loading and the sintering temperature. When regulating the initial solid loading (from 20 to 50 wt%) and sintering temperature (from 1200 to 1500 °C), the porosity can be controlled between 47.74% and 73.93%, and the compressive strength and the thermal conductivity of porous Y2SiO5 ceramics varied from 3.34 to 24.45 MPa and from 0.08 to 0.55 W/m K, respectively. It should be noted that the porous Y2SiO5 ceramics with 30 wt% solid loading and sintering at 1400 °C had an open porosity of 61.80%, a pore size of 2.24 μm, a low room-temperature thermal conductivity of 0.17 W/m K and a relatively high compressive strength of 13.91 MPa, which make this porous Y2SiO5 ceramics suitable for applications in high-temperature thermal insulators.  相似文献   

18.
Foam‐gelcasting‐freeze drying method is developed to fabricate porous Y2SiO5 ceramic with ultrahigh porosity of 92.2%‐95.8% and isotropous multiple pore structures. As prepared porous samples have quite low shrinkages of 0.8%‐1.9% during demolding and drying processes, lightweights of 0.19‐0.35 g/cm3, and extremely low thermal conductivities of 0.054‐0.089 W·(m·K)?1. Our approach combines the merits of foam‐gelcasting method and freeze drying method. It is a simple and effective method to fabricate porous ceramics with very high porosity and extremely low thermal conductivity through low shrinkage of green body and near net complex shape forming.  相似文献   

19.
《Ceramics International》2019,45(13):16470-16475
Porous SiC ceramics combine the properties of both SiC ceramics and porous materials. Herein, we design a facile method via pressureless sintering at relatively low temperatures for the synthesis of porous SiC ceramics. In the synthesis process, phosphoric acid was used as the sintering additive that reacted with SiO2 on the surface of SiC to form phosphates. The formed phosphates acted as a binder to connect the SiC particles. At a fixed temperature, the phosphates were partially decomposed and released a large amount of gas. This changed the pore structure of the ceramics and greatly improved their porosity. Finally, we obtained the porous SiC ceramics with high porosity and high strength. We investigate the effects of H3PO4 content on the phase composition, microstructure, porosity, mechanical properties and thermal expansion coefficient of the prepared porous SiC ceramics. It was shown that at the sintering temperature of 1200 °C, the highest porosity of the samples can reach 70.42% when the H3PO4 content is 25 wt%, and their bending strength reaches 36.11 MPa at room temperature when the H3PO4 content is 15 wt%. In addition, the porous SiC ceramics show good high-temperature stability with a bending strength of 42.05 MPa at 1000 °C and the thermal expansion coefficient of 3.966 × 10−6/°C.  相似文献   

20.
Sintering at high temperature is a serious problem for porous thermal insulating ceramics. To search for sintering-resistant ceramics, ZrP2O7 is selected as the backbone material and porous ZrP2O7 ceramics with 40−60 vol% porosities and strength of 3−14 MPa are fabricated. The volume shrinkage of the 60 vol% porosity ZrP2O7 is only 1.4 % when heated at 1773 K for 6 h and the thermal conductivity, which is as low as 0.18 W m-1 K-1, keeps almost unchanged. The dielectric constants are stable in the frequency range of 7−19 GHz when the temperature increases from 298 K to 1273 K. As the porosity increases from 44 % to 60 %, the dielectric constant at 19 GHz and 1273 K decreases from 3.4 to 2.5. Good sintering-resistance, ultra-low thermal conductivity and low dielectric constant at high temperatures make porous ZrP2O7 suitable for applications as thermal insulating and wave-transmitting materials at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号