首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(18):16174-16177
Nickel oxide and Yttria-stabilized zirconia (NiO/YSZ) composite is one of the most promising mixed conducting electrode materials in both solid oxide electrolysis cell and solid oxide fuel cell applications. In this study, 50 wt% NiO and 50 wt% YSZ composite was synthesized via a modified glycine-nitrate combustion process (GNP) and the effect of sintering temperatures (1100 °C, 1300 °C and 1500 °C) on its microstructure and electrical properties were investigated. TG/DTA and in-situ high temperature XRD revealed the thermal property behavior and the structural changes of the as-combusted precursor material. For all the samples sintered at different temperatures, room temperature XRD patterns revealed a distinct cubic phases of both YSZ and NiO while SEM images showed a porous microstructure. The total conductivities at 700 °C are 9.87 × 10−3, 5.26 × 10−3, 4.02 × 10−3 S/cm for the 1100, 1300, and 1500 °C with activation energies of 0.1722, 0.3555, and 0.3768 eV, respectively. Conductivity measurements of the different sintered samples revealed that the total conductivities as well as the activation energies are greatly affected by different sintering temperatures.  相似文献   

2.
《Ceramics International》2016,42(7):8108-8114
Ultra-fine hafnium carbide (HfC) powders were synthesized using a novel method combining liquid precursor conversion and plasma activated sintering (PAS). Solution-based processing was used to achieve a fine-scale mixing of the reactants, and further treatment by PAS allowed fast formation of HfC. We investigated the effect of the type of acid used during the liquid precursor conversion on the synthesized powders, where mixtures were prepared using salicylic acid, citric acid, or a combination of these. The results show that pure HfC powders (with an average particle sizes of 350 nm) were obtained at a relatively low temperature (1550 °C) using a HfOCl2·8H2O precursor with the mixed acids. The oxygen content of the synthesized powders was only 0.97 wt%. The type of acid had a significant effect on the synthesis product. When using only citric acid, the temperature required to produce pure hafnium carbide increased to 1700 °C. In the case of a salicylic acid precursor, pure HfC was not obtained, even at a synthesis temperature of 1700 °C.  相似文献   

3.
《Ceramics International》2017,43(12):8905-8911
NiO-C0.9Gd0.1O1.95 (NiO-GDC) composites obtained using a chemical route (one-step synthesis) were characterized by thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and impedance spectroscopy (between 300 and 650 °C in air). Rietveld refinement of XRD data indicated that synthesized powders are ultrafine and the crystallite size of the GDC phase decreases with increasing NiO content. The relative density of sintered samples is influenced by the NiO content, but easily brought to values above 95% after sintering at 1450–1500 °C. NiO-GDC composites exhibited homogeneous phase distribution and grain size often lower than 1 µm. With 30–40 wt% NiO this phase dominates the overall electrical conductivity of NiO-GDC. The combination of grain size, conductivity and microstructural characteristics shows the efficacy of the adopted processing route to obtain high quality Ni-GDC cermet precursors.  相似文献   

4.
《Ceramics International》2016,42(10):12136-12147
Nickel ferrite (NiFe2O4) powders derived by auto-combustion synthesis using three different fuels (citric acid, glycine and dl-alanine) have been characterized. The sintering behavior of ceramics using these powders has been compared. Oxygen balance (OB) setting for the chemical reaction is found to regulate the combustion reaction rate. A rapid reaction rate and a high flame temperature are achieved with dl alanine fuel yielding single phase NiFe2O4 powder in the as-burnt stage, whereas powders derived with citric acid and glycine fuels show poor crystallinity and necessitate post-annealing. The powder particles are largely agglomerated with a non-uniform distribution in shape and size, and the average particle size is estimated in the range ~ 54–71 nm. Powders derived from dl-alanine fuel show better phase purity, smaller crystallite size, larger surface area and superior sintering behavior. Additional Raman modes discerned for dl-alanine derived powder support a 1:1 ordering of Ni2+ and Fe3+ at the octahedral sites relating to microscopic tetragonal P4122 symmetry expected theoretically for the formation of NiFe2O4 with inverse spinel structure. Microstructure of sintered ceramics depends on the precursor powders that are used and sintering at 1200 °C is found to be optimum. Citric acid and glycine derived powders yield high saturation magnetization (Ms~47–49 emu/g), but poor dielectric properties, whereas dl-alanine derived powders yield ceramics with high resistivity (~3.4×108 Ω cm), low dielectric loss (tan δ~0.003 at 1 MHz) and high magnetization (46 emu/g). Dielectric dispersion and impedance analysis show good correlation with the changes in the ceramic microstructure.  相似文献   

5.
《Ceramics International》2017,43(4):3919-3922
Mullite-based ceramics have been synthesized by reactive sintering of a mixture containing kaolin and a mica-rich kaolin waste. Samples fired in the temperature range from 1300 to 1500 °C were characterized by X-ray diffraction (XRD). The quantitative phase analysis and unit cell parameters of the mullite were determined by Rietveld refinement analysis of the XRD data. Mullite-based ceramics with 1.2 wt% quartz, 56.3 wt% glass (amorphous phase), 2.64 g/cm3 of apparent density, and 35±1.2 MPa of flexural strength were obtained after firing at 1500 °C. A liquid phase sintering mechanism activated by a total mica content of 13.3 wt% allowed to increase the mullite content to 47.6 wt% (2.3 wt% quartz and 50.1 wt% glass phase) and improve the flexural strength (70±3.9 MPa) after firing at 1400 °C.  相似文献   

6.
Cleaned Cathode Ray Tube (CRT) (panel and funnel) waste glasses produced from dismantling TV and PC colour kinescopes were used to prepare glass foams by a simple and economic processing route, consisting of a direct heating of glass powders at relatively low temperatures (600–800 °C). This study reports on the feasibility of producing glass foams using waste egg shells as an alternative calcium carbonate-based (95 wt%) foaming agent derived from food industry. The foaming process was found to depend on a combination of composition, processing temperature and mixture of raw materials (glass wastes). Hot stage microscopy (HSM), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize foams and evaluate the foaming ability and the sintering process. The experimental compositions allowed producing well sintered glass foams with suitable properties for some functional applications with environmental benefits such as: (1) reduced energy consumption because of the low heat treatment temperatures used; and (2) materials produced exclusively from residues.  相似文献   

7.
We have studied the effect of NiO on the sintering of yttria-stabilized zirconia at temperatures ranging from 1300 °C to 1500 °C in air and argon environments. It was found that the addition of NiO stabilized the cubic phase of ZrO2 independently from the sintering atmosphere. The monoclinic phase of ZrO2 formed only during sintering within the air environment at temperatures higher than 1450 °C. The transformation of NiO to Ni by reversible decomposition depends on the sintering atmosphere, and this can lead to variations in the nature of inclusions and in changes of the structure and properties of nanocomposite materials in the system ZrO2–NiO(Ni). NiO and Ni inclusions can increase the indentation fracture toughness of zirconia–nickel oxide composite material more than 50%, which can be compared with zirconia ceramics during sintering in a neutral atmosphere alone.  相似文献   

8.
《Ceramics International》2015,41(8):9745-9752
Porous silica ceramics were obtained at low forming pressure and low sintering temperature by using diatomaceous earth as a silica source and boric acid as an inexpensive additive. The starting raw material, diatomite from surface coal mine Kolubara, Serbia, was purified from organic and inorganic impurities by using heat and chemical treatment. Boric acid was used as binding and sintering aid up to 2 wt%. Powder was compacted by using different pressures of 40, 60 and 80 MPa. The pressed samples were sintered at 850, 1000, 1150, and 1300 °C for 4 h in air. A relatively high porosity in the range of 60–70% is obtained for the samples pressed at 40, 60 and 80 MPa and sintered at 1000 °C. Median pore size diameters are in the range of macroporous up to 2 μm in the samples sintered at 1150 and 1300 °C. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scaning electron microscopy (SEM) and mercury porosimetry measurements were employed to characterize the phases, functional groups, microstructure and pore size distribution of the obtained samples. In addition, measurements of densities and open porosities by immersion technique, according to Archimedes principle, were used. The relations between mechanical properties (Young modulus, Poisson ratio, and compressive strength) versus content of boric acid in the investigated samples were studied and disscussed.  相似文献   

9.
《Ceramics International》2016,42(4):5339-5344
Dense mullite–Mo (45 vol%) composites with homogeneous microstructure have been obtained by plasma activated sintering of a mixture of Mo and mullite precursors at a relatively low temperature (1350 °C) and a pressure of 30 MPa. The mullite precursor was synthesized by a sol–gel process followed by a heat-treatment at 1000 °C. The influence of different mullite precursors on the densification behavior and the microstructure of mullite–Mo composites has been studied. The precursor powder heat-treated at 1000 °C with only Si–Al spinel but no mullite phase shows an excellent sintering activity. Following the sintering shrinkage curves, a two-stage sintering process is designed to enhance the composite densification for further reducing the sintering temperature. The study reveals that viscous flow sintering of amorphous SiO2 at low temperatures effectively enhances the densification. Moreover, microstructure of these composites can be controlled by selecting different precursors and sintering temperatures.  相似文献   

10.
《Ceramics International》2016,42(16):18303-18311
The LiFePO4/C (LFP/C) composite as a cathode material for lithium-ion battery was synthesized by solid-state reaction under vacuum sintering condition (20–5 Pa). The effects of vacuum sintering temperature and time on the phase composition, morphological structure, and electrochemical performance of LFP/C composite were investigated by X-ray diffraction, scanning electron microscopy, galvanostatic charge–discharge cycling test, and electrochemical impedance spectroscopy. The synthetic LFP/C composite possessed uniform particle-size distribution with porous architecture upon sintering at 650 °C for 12 h and thus exhibited the highest discharge capacity and best cycle performance. The complete decomposition of citric acid at a suitable temperature under vacuum condition resulted in the formation of porous structure. Compared with atmospheric argon sintering, vacuum sintering method led to the formation of porous architecture, the porous sample showed excellent cycle performance with less than 2% capacity loss after 80 cycles at 0.2 C, and reached the discharge specific capacity of 87.6 mAh g−1 at 10 C rate, these are better than that of atmospheric argon sintering. The LFP/C composite prepared under vacuum sintering also reduced the optimum sintering temperature by nearly 100 °C compared with that prepared under atmospheric argon sintering.  相似文献   

11.
Functionally-graded NiO–8 mol % YSZ composite films were prepared by a controlled voltage-decay electophoretic deposition (EPD) process. The films consisted of three layers with varying NiO concentrations and porosities. Effects of different parameters including the type of the organic media, solid concentration, NiO:YSZ ratio, and iodine on the stability of EPD suspensions and deposition kinetics were studied. A stable NiO–YSZ suspension was attained in isopropanol with NiO–YSZ ratio of 60:40 and iodine concentration of 0.5 mM. The composite film contained varying NiO concentration from 46 wt.% near the substrate to 32 wt.% close to the electrolyte with 42 wt% NiO in the intermediate region. The thickness of each layer is about 10, 44 and 68 μm, respectively. The prepared anode could be promising for solid oxide full cells as it compromises good contact to the electrode with higher corrosion resistance and active reaction zone with the electrolyte.  相似文献   

12.
《Ceramics International》2015,41(4):5663-5669
This work investigated the mechanical and electrical properties of NiO–SDC/SDC anode sintered by two different methods: in a microwave at about 1200 °C for 1 h and in a conventional furnace at 1200 °C with a holding time of 1 h (total sintering time of 21 h). Nano-powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed using a high-energy ball mill, followed by the co-pressing technique at a compaction pressure of 400 MPa. No binder was used between the layers. The electrical behaviors of all sintered samples were studied using electrochemical impedance spectra in the frequency range of 0.01–105 Hz under 97% H2–3% H2O, an amplitude of 10 mV, and at high temperature range of 600–800 °C. Results indicate that the non-symmetrical NiO–SDC/SDC anode achieved through microwave sintering has finer grain size and higher electrochemical performance. However, hardness and Young׳s modulus increased in the samples sintered through a conventional furnace.  相似文献   

13.
Nickel oxide–yttira stabilized zirconia (NiO–YSZ) interdispersed composite (IC) particles were prepared by a mechanochemical processing using NiO and YSZ nanoparticles. Transmission electron microscopy (TEM) revealed that primally particles of YSZ (75 nm) and NiO (160 nm) were presented alternatively in the composite particles. Specific surface area (SSA) decreased from 8.6 to 7.1 m2/g during the mechanochemical processing. The SSA reduction suggested that the chemically bound NiO/YSZ hetero-interfaces were formed during the processing. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) visualized that the anode made from the IC particles consisted of three-dimensional textured structure of fine Ni and YSZ networks (grain size of them was approximately 500 nm) with 34 vol% of porosity. The anode demonstrated not only low polarization of 152 mV at 1 A/cm2 even under the operation at 700 °C but also long-term stability for 920 h.  相似文献   

14.
《Ceramics International》2016,42(8):9550-9556
Tin selenide (SnSe) based thermoelectric materials with varying amounts of embedded silicon carbide (SiC) particles were fabricated, and their thermoelectric properties were investigated. The SiC particles were evenly distributed in the SnSe matrix, thereby leading to the formation of the SiC/SnSe composite samples. The introduction of SiC into the SnSe matrix improved the power factors, owing mainly to an increase in the Seebeck coefficient, and a decrease in the thermal conductivity arising from the formation of phonon-scattering centers. Consequently, a ZT of 0.125 (at 300 K) was obtained for the SiC/SnSe composite with a SiC content of 1 wt%; this value was larger than that of the pristine SnSe. The results of this study indicate that the introduction of SiC particles into the SnSe matrix constitutes an efficient strategy for achieving thermoelectric enhancement for solid-state applications.  相似文献   

15.
《Ceramics International》2015,41(8):9770-9778
The combination of bioinert and bioactive material offers new potentialities in bone tissue engineering. The present paper deals with preparation of novel biomaterial composite based on silicon nitride (Si3N4) and bioglass (in amount of 10 and 30 wt%) by free sintering at 980 °C for 1 h in nitrogen atmosphere. The obtained material was characterised by differential thermal analysis (DTA) and X-ray powder diffraction (XRD), porosity and pore size distribution were evaluated by means of mercury intrusion porosimetry (MIP). The bioactivity was examined in vitro with respect to the ability of hydroxyapatite layer formation on the surface of materials as a result of contact with simulated body fluid (SBF). All composites were studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) before and after immersion in SBF. The bioglass-free sample was prepared as a reference material to compare the microstructure and bioactivity to the composites.  相似文献   

16.
《Ceramics International》2016,42(4):5353-5361
TiB2-based composite ceramic tool materials with different amounts of TiC and SiC were fabricated via a reactive hot pressing process. The mechanical properties at room temperature and flexural strength at 800–1300 °C were tested in ambient air. The composition and microstructure before and after the high-temperature strength tests were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy-dispersive spectrometer (EDS). The flexural strength increment/degradation mechanisms at elevated temperatures were investigated. In-situ synthesized TiC improved the sinterability and mechanical properties of the materials at both room and elevated temperatures. Comparing with TTS (TiB2–15.9 wt%TiC–10.6 wt%SiC) and TS (TiB2–22.4 wt%SiC), TTS3 (TiB2–8.1 wt%TiC–16.4 wt%SiC) had the optimum room temperature mechanical properties, i.e., flexural strength of 862 MPa, fracture toughness of 6.4 MPa m1/2, hardness of 22.8 GPa, and relative density of 99.3%. The improved mechanical properties were ascribed to the fine grain size. The flexural strength of the TTS composite at 800 °C was higher than that at room temperature. The improvement of the flexural strength was attributed to the healing of preexisting flaws and the relief of residual stress. Substantial strength degradation took place when the temperature exceeded 1000 °C, due to softening of the grain boundaries, surface oxidation and elastic modulus degradation.  相似文献   

17.
Recently, great effort has been devoted to obtain porous materials with customized pore size distribution, high surface area and submicrometer sized microstructures or nanostructures. In this work, the viability of colloidal processing routes to obtain porous bulk ceramics using alumina nanopowders and d-fructose as a dispersant and a porosity former has been explored.The rheological behaviour of nanosuspensions was studied in order to assure their stability and to analyse the influence of different parameters (solids loading, fructose content, pH, sonication time). Mesoporous green bodies were obtained by slip casting with d-fructose in concentrations ranging from 5 to 50 wt%. The drying and burning-out conditions were determined by DTA-TG measurements and the sintering cycles were selected from the dynamic sintering curve. Sintered alumina materials with high porosity (>60%), open microstructures, submicrometer sized porosity (dp = 140–210 nm) and grain size lower than 500 nm, were obtained for pieces sintered at temperatures of 1300 and 1400 °C. The influence of different processing parameters on the porosity and the microstructure of the sintered materials is discussed.  相似文献   

18.
《Ceramics International》2017,43(2):2170-2173
HfB2-x vol%CNTs (x=0, 5, 10, and 15) composites are prepared by spark plasma sintering. The influence of CNTs content and sintering temperature on densification, microstructure and mechanical properties is studied. Compared with pure HfB2 ceramic, the sinterability of HfB2-CNTs composites is remarkably improved by the addition of CNTs. Appropriate addition of CNTs (10 vol%) and sintering temperature (1800 °C) can achieve the highest mechanical properties: the hardness, flexural strength and fracture toughness are measured to be 21.8±0.5 GPa, 894±60 MPa, and 7.8±0.2 MPa m1/2, respectively. This is contributed to the optimal combination of the relative density, grain size and the dispersion of CNTs. The crack deflection, CNTs debonding and pull-out are observed and supposed to exhaust more fracture energy during the fracture process.  相似文献   

19.
《Ceramics International》2015,41(6):7611-7617
CrB2+MoSi2 ceramic composites with different contents of MoSi2 (5 wt% and 15 wt%) were prepared by pressureless sintering and hot-pressing techniques. For comparison, a monolithic CrB2 ceramic was also consolidated under the identical temperature, pressure and holding time by both pressureless sintering and hot-pressing techniques. The effects of the fabrication processes on the densification and mechanical properties of the composites were investigated. No improvement in density was observed upon addition of MoSi2 as sinter additive. The phase analysis and microstructural characterization of the resultant composites indicate that there are no sintering reactions between the matrix (CrB2) and the additive (MoSi2). The hardness and fracture toughness of the composites were measured in the range of 17–19 GPa and 3–5 MPa m1/2 respectively. The hardness was found to decrease (7% to 8%) and fracture toughness was found to increase (60%–90%) with respect to the addition of MoSi2.  相似文献   

20.
Single-phase β-sialon powders (z = 2–4) have been prepared with homogeneous compositions by the combustion synthesis. The raw materials (Si, Al and SiO2) were combusted under N2 pressure of 1 MPa. Without using a diluent, the reaction temperatures were very high (>2000 °C) and the combustion products contained Si and Al residues. With addition of commercial β-sialon (z = 1) as a diluent (up to 50 wt%), both the reaction temperatures and amount of residual Si and Al significantly decreased. The combustion reactions completed at 50 wt% dilution, and pure β-sialon phases were synthesized. When the combustion product itself is used instead of the commercial diluent, the phase content of desired z value increased with the repetition times until a single-phase powder is produced. The sinterability of the synthesized powders was then tested using 5 wt% Y2O3 as a sintering aid by the spark plasma sintering (SPS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号